首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   4篇
  49篇
  2022年   1篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1964年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
11.
The enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is responsible for the control of intracellular levels of dUTP thus controlling the incorporation of uracil into DNA during replication. Trypanosomes and certain eubacteria contain a dimeric dUTP-dUDPase belonging to the recently described superfamily of all-alpha NTP pyrophosphatases which bears no resemblance with typical eukaryotic trimeric dUTPases and presents unique properties regarding substrate specificity and product inhibition. While the biological trimeric enzymes have been studied in detail and the human enzyme has been proposed as a promising novel target for anticancer chemotherapeutic strategies, little is known regarding the biological function of dimeric proteins. Here, we show that in Trypanosoma brucei, the dimeric dUTPase is a nuclear enzyme and that down-regulation of activity by RNAi greatly reduces cell proliferation and increases the intracellular levels of dUTP. Defects in growth could be partially reverted by the addition of exogenous thymidine. dUTPase-depleted cells presented hypersensitivity to methotrexate, a drug that increases the intracellular pools of dUTP, and enhanced uracil-DNA glycosylase activity, the first step in base excision repair. The knockdown of activity produces numerous DNA strand breaks and defects in both S and G2/M progression. Multiple parasites with a single enlarged nucleus were visualized together with an enhanced population of anucleated cells. We conclude that dimeric dUTPases are strongly involved in the control of dUTP incorporation and that adequate levels of enzyme are indispensable for efficient cell cycle progression and DNA replication.  相似文献   
12.

Background  

Evc is essential for Indian Hedgehog (Hh) signalling in the cartilage growth plate. The gene encoding Evc2 is in close proximity in divergent orientation to Evc and mutations in both human genes lead to the chondrodysplasia Ellis-van Creveld syndrome.  相似文献   
13.
3-Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is a key enzyme in the sterol biosynthesis pathway, but its subcellular distribution in the Trypanosomatidae family is somewhat controversial. Trypanosoma cruzi and Leishmania HMGRs are closely related in their catalytic domains to bacterial and eukaryotic enzymes described but lack an amino-terminal domain responsible for the attachment to the endoplasmic reticulum. In the present study, digitonin-titration experiments together with immunoelectron microscopy were used to establish the intracellular localization of HMGR in these pathogens. Results obtained with wild-type cells and transfectants overexpressing the enzyme established that HMGR in both T. cruzi and Leishmania major is localized primarily in the mitochondrion and that elimination of the mitochondrial targeting sequence in Leishmania leads to protein accumulation in the cytosolic compartment. Furthermore, T. cruzi HMGR is efficiently targeted to the mitochondrion in yeast cells. Thus, when the gene encoding T. cruzi HMGR was expressed in a hmg1 hmg2 mutant of Saccharomyces cerevisiae, the mevalonate auxotrophy of mutant cells was relieved, and immunoelectron analysis showed that the parasite enzyme exhibits a mitochondrial localization, suggesting a conservation between the targeting signals of both organisms.  相似文献   
14.
15.

Background

Plasmodium chabaudi chabaudi can be considered as a rodent model of human malaria parasites in the genetic analysis of important characters such as drug resistance and immunity. Despite the availability of some genome sequence data, an extensive genetic linkage map is needed for mapping the genes involved in certain traits.

Methods

The inheritance of 672 Amplified Fragment Length Polymorphism (AFLP) markers from two parental clones (AS and AJ) of P. c. chabaudi was determined in 28 independent recombinant progeny clones. These, AFLP markers and 42 previously mapped Restriction Fragment Length Polymorphism (RFLP) markers (used as chromosomal anchors) were organized into linkage groups using Map Manager software.

Results

614 AFLP markers formed linkage groups assigned to 10 of 14 chromosomes, and 12 other linkage groups not assigned to known chromosomes. The genetic length of the genome was estimated to be about 1676 centiMorgans (cM). The mean map unit size was estimated to be 13.7 kb/cM. This was slightly less then previous estimates for the human malaria parasite, Plasmodium falciparum

Conclusion

The P. c. chabaudi genetic linkage map presented here is the most extensive and highly resolved so far available for this species. It can be used in conjunction with the genome databases of P. c chabaudi, P. falciparum and Plasmodium yoelii to identify genes underlying important phenotypes such as drug resistance and strain-specific immunity.  相似文献   
16.
Enteroaggregative Escherichia coli (EAEC) is a leading cause of acute and persistent diarrhea worldwide. A recently emerged Shiga-toxin-producing strain of EAEC resulted in significant mortality and morbidity due to progressive development of hemolytic-uremic syndrome. The attachment of EAEC to the human intestinal mucosa is mediated by aggregative adherence fimbria (AAF). Using X-ray crystallography and NMR structures, we present new atomic resolution insight into the structure of AAF variant I from the strain that caused the deadly outbreak in Germany in 2011, and AAF variant II from archetype strain 042, and propose a mechanism for AAF-mediated adhesion and biofilm formation. Our work shows that major subunits of AAF assemble into linear polymers by donor strand complementation where a single minor subunit is inserted at the tip of the polymer by accepting the donor strand from the terminal major subunit. Whereas the minor subunits of AAF have a distinct conserved structure, AAF major subunits display large structural differences, affecting the overall pilus architecture. These structures suggest a mechanism for AAF-mediated adhesion and biofilm formation. Binding experiments using wild type and mutant subunits (NMR and SPR) and bacteria (ELISA) revealed that despite the structural differences AAF recognize a common receptor, fibronectin, by employing clusters of basic residues at the junction between subunits in the pilus. We show that AAF-fibronectin attachment is based primarily on electrostatic interactions, a mechanism not reported previously for bacterial adhesion to biotic surfaces.  相似文献   
17.
Ellis–van Creveld syndrome (EvC) is caused by mutations in EVC and EVC2, genes in a divergent orientation separated by only 2.6 kb. We systematically sought mutations in both genes in a panel of 65 affected individuals to assess the proportion of cases resulting from mutations in each gene. We PCR amplified and sequenced the coding exons of both genes. We investigated mutations that could affect splicing by in vitro splicing assays and cDNA analysis. We have identified EVC mutations in 20 cases (31%); in all of these we have detected the mutation on each allele. We have identified EVC2 mutations in 25 cases (38%); in 22 of these we have isolated a mutation on each allele. The majority of the mutations introduce a premature termination codon. We sequenced the region between the two genes in 10 of the 20 cases in which we had not identified a mutation in either gene, revealing only one SNP that was not a common polymorphism. As we have not identified mutations in either gene in 20 cases (31%) it is possible that there is further genetic heterogeneity. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
18.
Ellis-van Creveld syndrome (EvC) is an autosomal recessive skeletal dysplasia. Elsewhere, we described mutations in EVC in patients with this condition (Ruiz-Perez et al. 2000). We now report that mutations in EVC2 also cause EvC. These two genes lie in a head-to-head configuration that is conserved from fish to man. Affected individuals with mutations in EVC and EVC2 have the typical spectrum of features and are phenotypically indistinguishable.  相似文献   
19.
The serine protease autotransporters of Enterobacteriaceae (SPATEs) represent a large family of virulence factors. The prevailing model for autotransporter secretion comprises entry to the periplasm via the Sec apparatus, followed by an obscure series of steps in which the C terminus of the periplasmic species inserts into the outer membrane as a β-barrel protein, accompanied by translocation of the passenger domain to the bacterial cell surface. Little is known about the fate of the autotransporter proteins in the periplasm, including whether accessory periplasmic proteins are involved in translocation to the external milieu. Here we studied the role of the major periplasmic chaperones in the biogenesis of EspP, a prototype SPATE protein produced by Escherichia coli O157:H7. The yeast two-hybrid approach, secretion analysis of chaperone mutant strains, and surface plasmon resonance analysis (SPR) revealed direct protein-protein interactions between the periplasmic SurA and DegP chaperones and either the EspP-β or EspP passenger domains. The secretion of EspP was moderately reduced in the surA and skp mutant strains but severely impaired in the degP background. Site-directed mutagenesis of highly conserved aromatic amino acid residues in the SPATE family resulted in ∼80% reduction of EspP secretion. Synthetic peptides containing aromatic residues derived from the EspP passenger domain blocked DegP and SurA binding to the passenger domain. SPR suggested direct protein-protein interaction between periplasmic chaperones and the unfolded EspP passenger domain. Our data suggest that translocation of AT proteins may require accessory factors, calling into question the moniker “autotransporter.”Secretion of proteins to the surface of gram-negative bacteria requires passage through the inner membrane (IM), the periplasm, and the outer membrane (OM). This formidable series of obstacles can be overcome only by complex biological processes. The autotransporter (AT) system, probably the most common gram-negative secretion mechanism (13), is characterized by formation of an OM β-barrel comprised of the C terminus of the periplasmic species. The precise events required for AT translocation across the OM, however, are controversial. The original model for OM translocation comprised targeting to the periplasm via the Sec apparatus, followed by formation of an OM β-barrel, which mediates passage of an unfolded or partially folded N-terminal passenger domain to the extracellular milieu (30). Three models of AT translocation have gained some acceptance (3, 16). According to the hairpin model, translocation of the passenger domain is initiated with the C-terminal end of the passenger forming a hairpin structure inside the AT β-barrel, followed by movement of the rest of the passenger through the barrel''s pore in a C-to-N direction. Under the Omp85 model, the pore-forming Omp85 (YaeT in Escherichia coli) OM protein (OMP) facilitates insertion of the AT translocator domain into the OM, whereupon the AT passenger domain translocates through the Omp85 pore. A third model entails the combination of the hairpin and Omp85 models, including concerted insertion and translocation. All models must reconcile observations seemingly in conflict. Bernstein and colleagues reported cleavage of the mature passenger by a protease located inside the C-terminal AT barrel (10); yet, the dimensions of the folded AT barrel channel are by most accounts too narrow to accommodate even a partially folded passenger species, which is suggested from experimental periplasmic disulfide bond formation within the passenger domain (7, 19, 21).The term “autotransporter” was initially proposed on the assumption that the translocated species contained all necessary information for movement to the extracellular space. We and others have challenged that assumption (11, 14). Recently, several periplasmic proteins have been implicated in the targeting and assembly of extracytoplasmic proteins, principally OMPs (27). Three biological functions have been recognized for these periplasmic proteins: (i) molecular chaperones such as DegP, SurA, Skp, FkpA, PpiA, and PpiD (1, 5, 8, 9, 23, 26) stabilize nonnative conformations of target proteins and facilitate their folding; (ii) peptidyl-prolyl cis-trans isomerases, such as SurA, PpiD, and FkpA (9, 33, 36), catalyze the rate-limiting steps of isomerization during folding; and (iii) proteases, such as DegP and DegQ (22), degrade unproductive or misfolded proteins. Recent reports have suggested the involvement of chaperones during the passage of the AT through the periplasm (31, 43), although the mechanisms have not been defined.Here we demonstrate further the requirement for periplasmic chaperones in the biogenesis of the serine protease ATs of Enterobacteriaceae (SPATEs). Our data suggest a requirement for these periplasmic factors in translocation and suggest direct binding of the chaperone proteins to specific highly conserved motifs in the AT passenger and β-domains.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号