首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103274篇
  免费   1197篇
  国内免费   1795篇
  106266篇
  2024年   33篇
  2023年   147篇
  2022年   286篇
  2021年   490篇
  2020年   359篇
  2019年   448篇
  2018年   12225篇
  2017年   10920篇
  2016年   7871篇
  2015年   1283篇
  2014年   1099篇
  2013年   1182篇
  2012年   5182篇
  2011年   13621篇
  2010年   12508篇
  2009年   8595篇
  2008年   10286篇
  2007年   11769篇
  2006年   648篇
  2005年   874篇
  2004年   1308篇
  2003年   1373篇
  2002年   1055篇
  2001年   435篇
  2000年   308篇
  1999年   196篇
  1998年   102篇
  1997年   89篇
  1996年   65篇
  1995年   71篇
  1994年   67篇
  1993年   71篇
  1992年   79篇
  1991年   89篇
  1990年   42篇
  1989年   39篇
  1988年   53篇
  1987年   32篇
  1986年   28篇
  1985年   23篇
  1984年   33篇
  1983年   32篇
  1982年   16篇
  1975年   16篇
  1973年   21篇
  1972年   258篇
  1971年   282篇
  1965年   20篇
  1962年   31篇
  1956年   15篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
72.
73.
The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.  相似文献   
74.
75.
76.

Background  

We have previously shown that supernatant from Candida albicans (CA) culture contains a Secretory Interleukin (IL)-12 Inhibitory Factor (CA-SIIF), which inhibits IL-12 production by human monocytes. However, the effect of CA-SIIF on secretion of other cytokines by monocytes is unknown, and detailed characterization of this factor has not been performed.  相似文献   
77.
'15N signatures of fossil peat were used to interpret past ecosystem processes on tectonically active subantarctic Macquarie Island. By comparing past vegetation reconstructed from the fossil record with present-day vegetation analogues, our evidence strongly suggests that changes in the '15N signatures of fossil peat at this location reflect mainly past changes in the proportion of plant nitrogen derived from animal sources. Associated with uplift above sea level over the past 8,500 years, fossil records in two peat deposits on the island chronicle a change from coastal vegetation with fur and elephant seal disturbance to the existing inland herbfield. Coupled with this change are synchronous changes in the '15N signatures of peat layers. At two sites 15N-enriched peat '15N signatures of up to +17‰ were associated with a high abundance of pollen of the nitrophile Callitriche antarctica (Callitrichaceae). At one site fossil seal hair was also associated with enriched peat '15N. Less 15N enriched '15N signatures (e.g. -1.9‰ to +3.9‰) were measured in peat layers which lacked animal associated C. antarctica and Acaena spp. Interpretation of a third peat profile indicates continual occupation of a ridge site by burrowing petrels for most of the Holocene. We suggest that 15N signatures of fossil peat remained relatively stable with time once deposited, providing a significant new tool for interpreting the palaeoecology.  相似文献   
78.
Aim Data and analyses of elevational gradients in diversity have been central to the development and evaluation of a range of general theories of biodiversity. Elevational diversity patterns have, however, been severely understudied for microbes, which often represent decomposer subsystems. Consequently, generalities in the patterns of elevational diversity across different trophic levels remain poorly understood. Our aim was to examine elevational gradients in the diversity of macroinvertebrates, diatoms and bacteria along a stony stream that covered a large elevational gradient. Location Laojun Mountain, Yunnan province, China. Methods The sampling scheme included 26 sites spaced at elevational intervals of 89 m from 1820 to 4050 m elevation along a stony stream. Macroinvertebrate and diatom richness were determined based on the morphology of the specimens. Taxonomic richness for bacteria was quantified using a molecular fingerprinting method. Over 50 environmental variables were measured at each site to quantify environmental variables that could correlate with the patterns of diversity. We used eigenvector‐based spatial filters with multiple regressions to account for spatial autocorrelation. Results The bacterial richness followed an unexpected monotonic increase with elevation. Diatoms decreased monotonically, and macroinvertebrate richness showed a clear unimodal pattern with elevation. The unimodal richness pattern for macroinvertebrates was best explained by the mid‐domain effect (r2 = 0.72). The diatom richness was best explained by the variation in nutrient supply, and the increase in bacterial richness with elevation may be related to an increased carbon supply. Main conclusions We found contrasting patterns in elevational diversity among the three studied multi‐trophic groups comprising unicellular and multicellular aquatic taxa. We also found that there may be fundamental differences in the mechanisms underlying these species diversity patterns.  相似文献   
79.
80.

Background  

With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号