首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  国内免费   4篇
  38篇
  2021年   1篇
  2020年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
11.
Sphingolipids are degraded by sphingomyelinase and ceramidase in the gut to ceramide and sphingosine, which may inhibit cell proliferation and induce apoptosis, and thus have anti-tumour effects in the gut. Although previous rodent studies including experiments on knockout mice indicate a role of neutral ceramidase in ceramide digestion, the human enzyme has never been purified and characterized in its purified form. We here report the purification and characterization of neutral ceramidase from human ileostomy content, using octanoyl-[(14)C]sphingosine as substrate. After four chromatographic steps, a homogeneous protein band with 116kDa was obtained. MALDI mass spectrometry identified 16 peptide masses similar to human ceramidase previously cloned by El Bawab et al. [Molecular cloning and characterization of a human mitochondrial ceramidase, J. Biol. Chem. 275 (2000) 21508-21513] and Hwang et al. [Subcellular localization of human neutral ceramidase expressed in HEK293 cells, Biochem. Biophys. Res. Commun. 331 (2005) 37-42]. By RT-PCR and 5'-RACE methods, a predicted partial nucleotide sequence of neutral ceramidase was obtained from a human duodenum biopsy sample, which was homologous to that of known neutral/alkaline ceramidases. The enzyme has neutral pH optimum and catalyses both hydrolysis and formation of ceramide without distinct bile salt dependence. It is inhibited by Cu(2+) and Zn(2+) ions and by low concentrations of cholesterol. The enzyme is a glycoprotein but deglycosylation does not affect its activity. Our study indicates that neutral ceramidase is expressed in human intestine, released in the intestinal lumen and plays a major role in ceramide metabolism in the human gut.  相似文献   
12.
影响松毛虫种群动态的因素   总被引:3,自引:0,他引:3  
韩瑞东  何忠  戈峰 《昆虫知识》2004,41(6):504-511
综述了影响松毛虫种群动态的因素。气候、天敌、食料、林业技术措施等都不同程度地影响着松毛虫种群的变动。当气候条件适宜 ,天敌数量减少 ,食料丰富 ,林业技术措施缺乏时 ,松毛虫种群就会出现暴发的趋势。反之 ,当气候条件恶劣、天敌数量较多 ,食料植物缺乏或营养恶化 ,林业技术措施得当时 ,松毛虫种群就会得到遏制。尽管松毛虫的种群变动受到多种因素影响 ,但是对松毛虫自身调节能力的研究尚缺乏。  相似文献   
13.
Abundant and well-preserved remains of noncalcareous algae and soft-bodied metazoans were collected from Middle Cambrian Kaili biota in Taijiang county, Guizhou Province, China. These remains provide further evidence for the wide geographic distribution of many Burgess Shale taxa. Among the algae, 5 genera (including two new genera) and 5 species are described. They are Marpolia spissa Walcott, Acinocricus stichus Conway Morris and Robison, Udotealga erecta Yang, Eosargassum sawata Yang, and Rhizophyton zhaoyuanlongii Yang. Contrasting the macroalgal fossil assemblage in the Kaili biota with one in the Burgess Shale biota, it is clear that similarity of the Kaili biota and the Burgess Shale biota is reflected by the same content of not only the soft-bodied metazoans, but also the noncalcareous algae.  相似文献   
14.
贵州台江早-中寒武世凯里组保存大量的生物化石,它构成了寒武纪重要的生物群之一--凯里生物群.在凯里生物群中保存有丰富的碳质薄膜藻类化石,新发现类似苔藓植物化石(Parafunaria sinensis Yang(gen.et sp.nov)),它具有藓类植物所拥有的典型的叶状体轮生现象、孢朔、孢朔柄和复杂的根系特征.推测它是藓类植物祖先,它为进一步研究藓类植物和陆生高等植物的起源和演化提供了新的线索.  相似文献   
15.

Aims

Variation in boron (B) efficiency in citrus in different rootstock genotypes is expressed as large differences in the occurrence of leaf symptoms and dry mass production under low B conditions, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B uptake, cellular B allocation, and pectin content can explain genotype differences in B efficiency between B-efficient citrange (Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.) and B-inefficient trifoliate orange (Poncirus trifoliata (L.) Raf.) citrus rootstock.

Methods

Plants were grown hydroponically in a nutrient solution supplemented with 5 μM B for 14 days and then transferred to a B-free medium (0 μM B) or control medium (5 μM B) for 35 days. Boron uptake and allocation and cell wall pectin contents were examined.

Results

After 35 days under B deprivation, shoot dry mass in trifoliate orange decreased by 28 %, but shoot dry mass of citrange was not significantly affected. Root growth of both types of rootstock seedlings was inhibited, but the trifoliate orange was affected more than the citrange. In comparison with B concentrations in plants prior to the commencement of B treatments, B deprivation for 35 days decreased B concentration in various parts of citrange plants, and the reduction was much greater in trifoliate orange plants. Trifoliate orange seedlings contained higher B concentration and total B in cell wall on a dry leaf basis than citrange subject to 5 μM B treatment. However, the proportion of leaf B allocated in cell wall was higher in citrange than trifoliate orange when B supply was deficient in the nutrient. The changes in pectin composition in cell wall due to B deprivation differed between citrange and trifoliate orange. The decreased uronic acid (UA) content in the Na2CO3-soluble pectin was observed in both rootstock, but the increased UA content in CDTA-soluble pectin was observed only in citrange.

Conclusions

These results demonstrated that a combination of greater B uptake ability, greater B accumulation in cell walls, as well as the increased CDTA-soluble pectin, under limited external B supply, contribute to the integrity of cell walls in citrange and therefore increased tolerance to B deficiency.  相似文献   
16.
引进天敌椰甲截脉姬小蜂防治椰心叶甲的可行性探讨   总被引:17,自引:2,他引:17  
从2 0 0 2年海南省首次在海口市发现新入侵害虫椰心叶甲Brontispalongissima(Gestro)以来,现该虫已蔓延到海南省的1 1个市县。从地理纬度、气候条件、寄主分布范围等自然条件来看,椰心叶甲也完全有可能向高纬度的临近省份扩散。直接影响到种植业及旅游业的健康发展,因此防治该虫迫在眉睫。通过海南省的生态条件,椰心叶甲的寄主和天敌特点综合分析,认为引进天敌椰甲截脉姬小蜂Asecodeshispinarum防治该害虫是经济有效的方法。  相似文献   
17.
Sphingomyelin (SM) metabolism in the gut may have an impact on colon cancer development. In this study, we purified alkaline sphingomyelinase (alk-SMase) from human intestinal content, and studied its location in the mucosa, expression in colon cancer, and function on colon cancer cells. The enzyme was purified by a series of chromatographies. The molecular mass of the enzyme is 60 kDa, optimal pH is 8.5, and isoelectric point is 6.6. Under optimal conditions, 1 mg of the enzyme hydrolyzed 11 mM SM per hour. The properties of the enzyme are similar to those of rat intestinal alk-SMase but not to those of bacterial neutral SMase. Immunogold electronmicroscopy identified the enzyme on the microvillar membrane in endosome-like structures and in the Golgi complexes of human enterocytes. The expression and the activity of the enzyme were decreased in parallel in human colon cancer tissues compared with the adjacent normal tissue. The enzyme inhibited DNA biosynthesis and cell proliferation dose dependently and caused a reduction of SM in HT29 cells. Intestinal alk-SMase is localized in the enterocytes, down-regulated in human colon cancer, and may have antiproliferative effects on colon cancer cells.  相似文献   
18.
The plant cytoskeleton is a highly dynamic component of plant cells and mainly based on microtubules (MTs) and actin filaments (AFs). The important functions of dynamic cytoskeletal networks have been indicated for almost every intracellular activity, from cell division to cell movement, cell morphogenesis and cell signal transduction. Recent studies have also indicated a close relationship between the plant cytoskeleton and plant salt stress tolerance. Salt stress is a significant factor that adversely affects crop productivity and quality of agricultural fields worldwide. The complicated regulatory mechanisms of plant salt tolerance have been the subject of intense research for decades. It is well accepted that cellular changes are very important in plant responses to salt stress. Because the organization and dynamics of cytoskeleton may play an important role in enhancing plant tolerance through various cell activities, study on salt stress-induced cytoskeletal network has been a vital topic in the subject of plant salt stress tolerance mechanisms. In this article, we introduce our recent work and review some current information on the dynamic changes and functions of cytoskeletal organization in response to salt stress. The accumulated data point to the existence of highly dynamic cytoskeletal arrays and the activation of complex cytoskeletal regulatory networks in response to salt stresses. The important role played by cytoskeleton in mediating the plant cell''s response to salt stresses is particularly emphasized.Key words: cytoskeleton, microtubules (MTs), microfilaments (MFs), salt stress, response mechanisms, plant tolerance  相似文献   
19.
The interactions of the bile salt sodium taurocholate (TC) in 50 mM Trizma-HCl buffer and 150 mM NaCl (pH 9) at 37 degrees C with membranes composed of sphingomyelin (SM) were studied by dynamic light scattering, cryogenic transmission electron microscopy (cryo-TEM) and turbidity measurements. Small unilamellar SM vesicles were prepared by extrusion. Below the CMC of TC, taurocholate addition leads to vesicle growth due to incorporation of the taurocholate molecules into the vesicle bilayer. At around half the CMC of the bile salt, the SM vesicles are transformed into SM/TC mixed worm-like micelles, which are visualized by cryo-TEM for the first time. Further increase in the taurocholate concentration leads to the rupture of these structures into small spherical micelles. Interestingly, large non-spherical micelles were also identified for pure taurocholate solutions. Similar threadlike structures have been reported earlier for the bile salt sodium taurodeoxycholate [Rich, A., Blow, D., 1958. Nature 182, 1777; Blow, D.M., Rich, A., 1960. J. Am. Chem. Soc. 82, 3566-3571; Galantini, L., Giglio, E., La Mesa, C., Viorel-Pavel, N., Punzo, F., 2002. Langmuir 18, 2812] and for mixtures of taurocholate and phosphatidylcholate [Ulmius, J., Lindblom, G., Wennerstr?m, H., Johansson, L.B.-A., Fontel, K., S?derman, O., Ardvisson, G., 1982. Biochemistry 21, 1553; Hjelm, R.P., Thiyagarajan, P., Alkan-Onyuksel, H., 1992. J. Phys. Chem. 96, 8653] as determined by various scattering methods.  相似文献   
20.

Background and Aims

In China, boron (B) deficiency is frequently observed in citrus orchards, and is responsible for considerable loss of productivity and quality. A better understanding of B distribution and remobilization within orange plants is important for developing programs in rational fertilization and effective mitigation of B-deficiency. In the present study (i) the distribution of newly absorbed B and (ii) the translocation of foliar-applied B in ‘Newhall’ navel orange grafted on citrange and trifoliate orange was investigated.

Methods

10B was applied in the nutrient solution or sprayed on the lower-old leaves of both grafted plants for 35?days.

Results

In the 10B uptake experiment, citrange-grafted plants showed higher newly acquired total B content and B concentration in both lower-old and upper-old leaves than those in trifoliate-orange-grafted plants. The newly absorbed B in the new leaves was much higher than that in the lower-old leaves and the upper-old leaves in both grafted plants. Foliar application of 10B to the lower-old leaves resulted in B translocation to the upper-old leaves and the new leaves with preference mainly to the new leaves in both citrange and trifoliate orange when root B supply was relatively low. However, 10B sprayed to the lower-old leaves not only did not increase the abundance percentage of 10B in the root, but also reduced B concentration and the total B content in the root.

Conclusions

The results suggest that foliar-applied B can be translocated within both grafted plants, which might also depress B uptake from root medium with low B supply. Rootstock can affect the B distribution in old leaves in navel orange, and newly absorbed B was preferentially transported to the new leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号