首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10661篇
  免费   995篇
  国内免费   1252篇
  2024年   28篇
  2023年   195篇
  2022年   414篇
  2021年   677篇
  2020年   484篇
  2019年   585篇
  2018年   533篇
  2017年   414篇
  2016年   518篇
  2015年   763篇
  2014年   910篇
  2013年   854篇
  2012年   1046篇
  2011年   862篇
  2010年   574篇
  2009年   496篇
  2008年   521篇
  2007年   467篇
  2006年   396篇
  2005年   366篇
  2004年   295篇
  2003年   304篇
  2002年   276篇
  2001年   181篇
  2000年   130篇
  1999年   119篇
  1998年   95篇
  1997年   68篇
  1996年   58篇
  1995年   39篇
  1994年   32篇
  1993年   31篇
  1992年   32篇
  1991年   38篇
  1990年   22篇
  1989年   19篇
  1988年   10篇
  1987年   7篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1976年   3篇
  1973年   2篇
  1971年   2篇
  1956年   1篇
  1952年   2篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Oral squamous cell carcinoma (OSCC) is the most common malignant tumour in the oral and maxillofacial region. Numerous cancers share ten common traits (“hallmarks”) that govern the transformation of normal cells into cancer cells. Long non‐coding RNAs (lncRNAs) are important factors that contribute to tumorigenesis. However, very little is known about the cooperative relationships between lncRNAs and cancer hallmark‐associated genes in OSCC. Through integrative analysis of cancer hallmarks, somatic mutations, copy number variants (CNVs) and expression, some OSCC‐specific cancer hallmark‐associated genes and lncRNAs are identified. A computational framework to identify gene and lncRNA cooperative regulation pairs (GLCRPs) associated with different cancer hallmarks is developed based on the co‐expression and co‐occurrence of mutations. The distinct and common features of ten cancer hallmarks based on GLCRPs are characterized in OSCC. Cancer hallmark insensitivity to antigrowth signals and self‐sufficiency in growth signals are shared by most GLCRPs in OSCC. Some key GLCRPs participate in many cancer hallmarks in OSCC. Cancer hallmark‐associated GLCRP networks have complex patterns and specific functions in OSCC. Specially, some key GLCRPs are associated with the prognosis of OSCC patients. In summary, we generate a comprehensive landscape of cancer hallmark‐associated GLCRPs that can act as a starting point for future functional explorations, the identification of biomarkers and lncRNA‐based targeted therapy in OSCC.  相似文献   
82.
The heterogeneity in prognoses and chemotherapeutic responses of colon cancer patients with similar clinical features emphasized the necessity for new biomarkers that help to improve the survival prediction and tailor therapies more rationally and precisely. In the present study, we established a s troma-related l ncRNA s ignature (SLS) based on 52 lncRNAs to comprehensively predict clinical outcome. The SLS model could not only distinguish patients with different recurrence and mortality risks through univariate analysis, but also served as an independent factor for relapse-free and overall survival. Compared with the conventionally used TNM stage system, the SLS model clearly possessed higher predictive accuracy. Moreover, the SLS model also effectively screened chemotherapy-responsive patients, as only patients in the low-SLS group could benefit from adjuvant chemotherapy. The following cell infiltration and competing endogenous RNA (ceRNA) network functional analyses further confirmed the association between the SLS model and stromal activation-related biological processes. Additionally, this study also identified three phenotypically distinct colon cancer subtypes that varied in clinical outcome and chemotherapy benefits. In conclusion, our SLS model may be a significant determinant of survival and chemotherapeutic decision-making in colon cancer and may have a strong clinical transformation value.  相似文献   
83.
Fibroblast growth factor receptor‐like 1 (FGFRL1), a member of the FGFR family, has been demonstrated to play important roles in various cancers. However, the role of FGFRL1 in small‐cell lung cancer (SCLC) remains unclear. Our study aimed to investigate the role of FGFRL1 in chemoresistance of SCLC and elucidate the possible molecular mechanism. We found that FGFRL1 levels are significantly up‐regulated in multidrug‐resistant SCLC cells (H69AR and H446DDP) compared with the sensitive parental cells (H69 and H446). In addition, clinical samples showed that FGFRL1 was overexpressed in SCLC tissues, and high FGFRL1 expression was associated with the clinical stage, chemotherapy response and survival time of SCLC patients. Knockdown of FGFRL1 in chemoresistant SCLC cells increased chemosensitivity by increasing cell apoptosis and cell cycle arrest, whereas overexpression of FGFRL1 in chemosensitive SCLC cells produced the opposite results. Mechanistic investigations showed that FGFRL1 interacts with ENO1, and FGFRL1 was found to regulate the expression of ENO1 and its downstream signalling pathway (the PI3K/Akt pathway) in SCLC cells. In brief, our study demonstrated that FGFRL1 modulates chemoresistance of SCLC by regulating the ENO1‐PI3K/Akt pathway. FGFRL1 may be a predictor and a potential therapeutic target for chemoresistance in SCLC.  相似文献   
84.
LncRNA and miRNA are key molecules in mechanism of competing endogenous RNAs(ceRNA), and their interactions have been discovered with important roles in gene regulation. As supplementary to the identification of lncRNA‐miRNA interactions from CLIP‐seq experiments, in silico prediction can select the most potential candidates for experimental validation. Although developing computational tool for predicting lncRNA‐miRNA interaction is of great importance for deciphering the ceRNA mechanism, little effort has been made towards this direction. In this paper, we propose an approach based on linear neighbour representation to predict lncRNA‐miRNA interactions (LNRLMI). Specifically, we first constructed a bipartite network by combining the known interaction network and similarities based on expression profiles of lncRNAs and miRNAs. Based on such a data integration, linear neighbour representation method was introduced to construct a prediction model. To evaluate the prediction performance of the proposed model, k‐fold cross validations were implemented. As a result, LNRLMI yielded the average AUCs of 0.8475 ± 0.0032, 0.8960 ± 0.0015 and 0.9069 ± 0.0014 on 2‐fold, 5‐fold and 10‐fold cross validation, respectively. A series of comparison experiments with other methods were also conducted, and the results showed that our method was feasible and effective to predict lncRNA‐miRNA interactions via a combination of different types of useful side information. It is anticipated that LNRLMI could be a useful tool for predicting non‐coding RNA regulation network that lncRNA and miRNA are involved in.  相似文献   
85.
86.
In recent years, plenty of studies found that circular RNAs (circRNAs) were essential players in the initiation and progression of various cancers including the renal cell carcinoma (RCC). However, the knowledge about the circRNAs in carcinogenesis is still limited. Dysregulated expression of circNUP98 in RCC tissues was identified by the circular RNA microarray. RT‐PCR was performed to measure the expression of circNUP98 in 78 pairs of RCC tissues and adjacent normal tissues. Survival analysis was conducted to explore the association between the expression of circNUP98 and the prognosis of RCC. The function and underlying mechanisms of circSMC3 in RCC cells were investigated by RNAi, CCK‐8, Western blotting, bioinformatic analysis, ChIP assay, circRIP assay and dual luciferase reporter assay. CircNUP98 was up‐regulated in both RCC tissues and cell lines, and high expression of circNUP98 was correlated with poor prognosis of RCC patients. Silencing of circSMC3 inhibited the proliferation and promoted the apoptosis in a caspase‐dependent manner in RCC cells. Mechanistically, we revealed that silencing of circ NUP98 inhibited RCC progression by down‐regulating of PRDX3 via up‐regulation of miR‐567. Furthermore, STAT3 was identified as an inducer of circ NUP98 in RCC cells. CircNUP98 acts as an oncogene by a novel STAT3/circ NUP98/miR‐567/PRDX3 axis, which may provide a potential biomarker and therapeutic target for the treatment of RCC.  相似文献   
87.
88.
Squalene has been used as a dietary supplement for a long history due to its potential cancer‐preventive function. However, the mechanism has not been investigated in detail yet. Therefore, the aim of this study is to see if the plasma coenzyme Q10 (CoQ10) level will be altered by gavage of squalene and oxidosqualenes to rats. In the present work, a sensitive and simple high‐performance analytical method based on ultra‐high‐performance liquid chromatography coupled with an Orbitrap mass spectrometry (UPLC‐Orbitrap‐MS) was developed for the quantification of CoQ10 in rat plasma. Coenzyme Q9 (CoQ9) was employed as the internal standard. CoQ10 was determined after acetonitrile‐mediated plasma protein precipitation using UPLC‐Orbitrap‐MS in negative ion mode. Intragastric administration of squalene and the two squalene epoxides into rats once daily for several days elevated the level of CoQ10 in their plasma, but there was no significant difference between high‐dose (286 mg/kg) and low‐dose (143 mg/kg) groups. Intragastric administration of squalene once a day for 5 consecutive days and oxidosqualenes once a day for 3 consecutive days is necessary for reaching the steady‐state level of CoQ10. Our present findings indicate that squalene and oxidosqualenes may be useful for stimulating the synthesis of CoQ10 in rats.  相似文献   
89.
Perovskite solar cells (PSCs) have attracted much attention in the past decade and their power conversion efficiency has been rapidly increasing to 25.2%, which is comparable with commercialized solar cells. Currently, the long‐term stability of PSCs remains as a major bottleneck impeding their future commercial applications. Beyond strengthening the perovskite layer itself and developing robust external device encapsulation/packaging technology, integration of effective barriers into PSCs has been recognized to be of equal importance to improve the whole device’s long‐term stability. These barriers can not only shield the critical perovskite layer and other functional layers from external detrimental factors such as heat, light, and H2O/O2, but also prevent the undesired ion/molecular diffusion/volatilization from perovskite. In addition, some delicate barrier designs can simultaneously improve the efficiency and stability. In this review article, the research progress on barrier designs in PSCs for improving their long‐term stability is reviewed in terms of the barrier functions, locations in PSCs, and material characteristics. Regarding specific barriers, their preparation methods, chemical/photoelectronic/mechanical properties, and their role in device stability, are further discussed. On the basis of these accumulative efforts, predictions for the further development of effective barriers in PSCs are provided at the end of this review.  相似文献   
90.
Water splitting requires development of cost‐effective multifunctional materials that can catalyze both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) efficiently. Currently, the OER relies on the noble‐metal catalysts; since with other catalysts, its operation environment is greatly limited in alkaline conditions. Herein, an advanced water oxidation catalyst based on metallic Co9S8 decorated with single‐atomic Mo (0.99 wt%) is synthesized (Mo‐Co9S8@C). It exhibits pronounced water oxidization activity in acid, alkali, and neutral media by showing positive onset potentials of 200, 90, and 290 mV, respectively, which manifests the best Co9S8‐based single‐atom Mo catalyst till now. Moreover, it also demonstrates excellent HER performance over a wide pH range. Consequently, the catalyst even outperforms noble metal Pt/IrO2‐based catalysts for overall water splitting (only requiring 1.68 V in acid, and 1.56 V in alkaline). Impressively, it works under a current density of 10 mA cm?2 with no obvious decay during a 24 h (0.5 m H2SO4) and 72 h (1.0 m KOH) durability experiment. Density functional theory (DFT) simulations reveal that the synergistic effects of atomically dispersed Mo with Co‐containing substrates can efficiently alter the binding energies of adsorbed intermediate species and decrease the overpotentials of the water splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号