首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16790篇
  免费   1505篇
  国内免费   1831篇
  2024年   40篇
  2023年   308篇
  2022年   667篇
  2021年   1074篇
  2020年   743篇
  2019年   865篇
  2018年   797篇
  2017年   609篇
  2016年   796篇
  2015年   1132篇
  2014年   1412篇
  2013年   1338篇
  2012年   1601篇
  2011年   1355篇
  2010年   926篇
  2009年   776篇
  2008年   816篇
  2007年   788篇
  2006年   651篇
  2005年   566篇
  2004年   478篇
  2003年   416篇
  2002年   346篇
  2001年   261篇
  2000年   201篇
  1999年   197篇
  1998年   130篇
  1997年   103篇
  1996年   103篇
  1995年   67篇
  1994年   71篇
  1993年   64篇
  1992年   85篇
  1991年   72篇
  1990年   46篇
  1989年   60篇
  1988年   30篇
  1987年   34篇
  1986年   26篇
  1985年   27篇
  1984年   9篇
  1983年   15篇
  1982年   6篇
  1981年   3篇
  1980年   5篇
  1979年   6篇
  1978年   1篇
  1974年   1篇
  1970年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
It has long been assumed that serial homologues are ancestrally similar—polysomerism resulting from a “duplication” or “repetition” of forms—and then often diverge—anisomerism, for example, as they become adapted to perform different tasks as is the case with the forelimb and hind limbs of humans. However, such an assumption, with crucial implications for comparative, evolutionary, and developmental biology, and for evolutionary developmental biology, has in general not really been tested by a broad analysis of the available empirical data. Perhaps not surprisingly, more recent anatomical comparisons, as well as molecular knowledge of how, for example, serial appendicular structures are patterned along with different anteroposterior regions of the body axis of bilateral animals, and how “homologous” patterning domains do not necessarily mark “homologous” morphological domains, are putting in question this paradigm. In fact, apart from showing that many so-called “serial homologues” might not be similar at all, recent works have shown that in at least some cases some “serial” structures are indeed more similar to each other in derived taxa than in phylogenetically more ancestral ones, as pointed out by authors such as Owen. In this article, we are taking a step back to question whether such assumptions are actually correct at all, in the first place. In particular, we review other cases of so-called “serial homologues” such as insect wings, arthropod walking appendages, Dipteran thoracic bristles, and the vertebrae, ribs, teeth, myomeres, feathers, and hairs of chordate animals. We show that: (a) there are almost never cases of true ancestral similarity; (b) in evolution, such structures—for example, vertebra—and/or their subparts—for example, “transverse processes”—many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism.  相似文献   
12.
13.

Background  

Meiotic prophase is a critical stage in sexual reproduction. Aberrant chromosome recombination during this stage is a leading cause of human miscarriages and birth defects. However, due to the experimental intractability of mammalian gonads, only a very limited number of meiotic genes have been characterized. Here we aim to identify novel meiotic genes important in human reproduction through computational mining of cross-species and cross-sex time-series expression data from budding yeast, mouse postnatal testis, mouse embryonic ovary, and human fetal ovary.  相似文献   
14.
We assessed the effects of topographic heterogeneity and stem density on species composition between grains of different sizes (20 × 20, 50 × 50, and 100 × 100 m), based on partial Mantel tests. Similarity in species composition was measured by the abundance-based Jaccard index (C_J) and by an index that incorporates phylogenetic information into C_J (pC_J). Plants were divided into five groups, arbor, subarbor, and shrub according to life form and two other groups: species that produce dry fruits (PDF) and that produce fleshy fruits (PFF). C_J and pC_J between any two grains at each grain size were calculated separately for these groups and for all species combined. In order to examine what influences C_J and pC_J, we analyzed their correlations with topographic heterogeneity variables and two dispersal limitation-related variables (stem and topographic resistance). Our data indicate that at all three grain sizes, C_J and pC_J decrease with increasing distance for all plant groups. Dispersal limitation and topographic heterogeneity were both important at 20 × 20 and 50 × 50 m grain sizes for C_J and pC_J of all plant groups; and at 100 × 100 m grain size, topographic heterogeneity dominates over dispersal limitation for some plant groups. C_J and pC_J of PDFs are less negatively correlated with stem resistance than those of PFFs. We conclude that both beta diversity and phylobetadiversity are dependent on plant groups and grain sizes.  相似文献   
15.
Lochbihler  Hans  Ye  Yan  Xu  Yishen 《Plasmonics (Norwell, Mass.)》2018,13(6):2161-2167
Plasmonics - We investigate aluminum nanopatch/nanohole arrays surrounded by a dielectric material on plastic substrates for large area color printing. In this specific arrangement, metallic...  相似文献   
16.
We recently showed that bitter melon-derived triterpenoids (BMTs) activate AMPK and increase GLUT4 translocation to the plasma membrane in vitro, and improve glucose disposal in insulin resistant models in vivo. Here we interrogated the mechanism by which these novel compounds activate AMPK, a leading anti-diabetic drug target. BMTs did not activate AMPK directly in an allosteric manner as AMP or the Abbott compound (A-769662) does, nor did they activate AMPK by inhibiting cellular respiration like many commonly used anti-diabetic medications. BMTs increased AMPK activity in both L6 myotubes and LKB1-deficient HeLa cells by 20–35%. Incubation with the CaMKKβ inhibitor, STO-609, completely attenuated this effect suggesting a key role for CaMKKβ in this activation. Incubation of L6 myotubes with the calcium chelator EGTA-AM did not alter this activation suggesting that the BMT-dependent activation was Ca2+-independent. We therefore propose that CaMKKβ is a key upstream kinase for BMT-induced activation of AMPK.  相似文献   
17.
18.
19.
H. Bai  Y. Sun  N. Liu  Y. Liu  F. Xue  Y. Li  S. Xu  A. Ni  J. Ye  Y. Chen  J. Chen 《Animal genetics》2018,49(3):226-236
Beak deformity (crossed beaks) is found in several indigenous chicken breeds including Beijing‐You studied here. Birds with deformed beaks have reduced feed intake and poor production performance. Recently, copy number variation (CNV) has been examined in many species and is recognized as a source of genetic variation, especially for disease phenotypes. In this study, to unravel the genetic mechanisms underlying beak deformity, we performed genome‐wide CNV detection using Affymetrix chicken high‐density 600K data on 48 deformed‐beak and 48 normal birds using penncnv . As a result, two and eight CNV regions (CNVRs) covering 0.32 and 2.45 Mb respectively on autosomes were identified in deformed‐beak and normal birds respectively. Further RT‐qPCR studies validated nine of the 10 CNVRs. The ratios of six CNVRs were significantly different between deformed‐beak and normal birds (< 0.01). Within these six regions, three and 21 known genes were identified in deformed‐beak and normal birds respectively. Bioinformatics analysis showed that these genes were enriched in six GO terms and one KEGG pathway. Five candidate genes in the CNVRs were further validated using RT‐qPCR. The expression of LRIG2 (leucine rich repeats and immunoglobulin like domains 2) was lower in birds with deformed beaks (< 0.01). Therefore, the LRIG2 gene could be considered a key factor in view of its known functions and its potential roles in beak deformity. Overall, our results will be helpful for future investigations of the genomic structural variations underlying beak deformity in chickens.  相似文献   
20.
Strain LSJC7, with dual resistance to arsenic and tetracycline, was isolated from an antimony tailing in China. Its 16S rRNA gene sequence has the highest similarity to that of Enterobacter cloacae subsp. dissolvens LMG 2683T (97.02%). Here we present the approximately 4.6-Mbp draft genome sequence of strain LSJC7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号