首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45422篇
  免费   3567篇
  国内免费   3878篇
  52867篇
  2024年   129篇
  2023年   678篇
  2022年   1499篇
  2021年   2603篇
  2020年   1671篇
  2019年   2112篇
  2018年   2056篇
  2017年   1445篇
  2016年   1971篇
  2015年   2874篇
  2014年   3415篇
  2013年   3602篇
  2012年   4193篇
  2011年   3706篇
  2010年   2360篇
  2009年   1949篇
  2008年   2309篇
  2007年   2002篇
  2006年   1830篇
  2005年   1508篇
  2004年   1216篇
  2003年   1084篇
  2002年   898篇
  2001年   750篇
  2000年   634篇
  1999年   666篇
  1998年   405篇
  1997年   393篇
  1996年   372篇
  1995年   331篇
  1994年   338篇
  1993年   275篇
  1992年   321篇
  1991年   254篇
  1990年   220篇
  1989年   196篇
  1988年   128篇
  1987年   102篇
  1986年   94篇
  1985年   88篇
  1984年   60篇
  1983年   57篇
  1982年   37篇
  1981年   11篇
  1980年   9篇
  1979年   11篇
  1976年   1篇
  1974年   1篇
  1965年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.

Background

Peptidyl-prolyl cis–trans isomerase NIMA-interacting 1 (PIN1) plays an important role in cancer development. The relationship between PIN1 −842G/C (rs2233678) polymorphism and cancer risk was inconclusive according to published literature.

Methodology/Principal Findings

A literature search, up to February 2013, was carried out using PubMed, EMBASE and the China National Knowledge Infrastructure (CNKI) database. A total of 10 case-control studies including 4619 cases and 4661 controls contributed to the quantitative analysis. Odds ratio (OR) and 95% confidence intervals (95% CI) were used to assess the strength of association. Overall, individuals with the variant CG (OR = 0.728, 95% CI: 0.585,0.906; Pheterogeneity<0.01) and CG/CC (OR = 0.731, 95% CI: 0.602,0.888; Pheterogeneity<0.01) genotypes were associated with a significantly reduced cancer risk compared with those with wild GG genotype. Sub-group analysis revealed that the variant CG (OR = 0.635, 95% CI: 0.548,0.735; Pheterogeneity = 0.240) and CG/CC (OR = 0.645, 95% CI: 0.559,0.744, Pheterogeneity = 0.258) genotypes still showed an reduced risk of cancer in Asians; while no significant association was observed in Caucasians (CG vs.GG: OR = 0.926, 95% CI: 0.572,1.499, Pheterogeneity<0.01; CG/CC vs. GG: OR = 0.892, 95% CI: 0.589,1.353; Pheterogeneity<0.01). Furthermore, sensitivity analysis confirmed the stability of results. Begg''s funnel plot and Egger''s test did not reveal any publication bias.

Conclusions

This meta-analysis suggests that the PIN1 −842G/C polymorphism is associated with a significantly reduced risk of cancer, especially in Asian populations.  相似文献   
142.
Twelve groups of fossils, including graptolites, brachiopods, nautiloids, trilobites, corals, crinoids, bryozoans, conodonts, ostracods, gastropods, chitinozoans, and acritarchs expired in different but substantial magnitude and global extent during the late Caradoc to latest Ashgill. It indicates a multiple‐episodic mass extinction containing the possible Prologue (late Caradoc), Climax episode (Rawtheyan) and Epilogue (late Hirnantian). The main causes of this mass extinction are recognized as a global sea‐level lowering in the climax and remarkable rapid rise at the final, and global cooling. The Chinese data, especially from the South China Paleoplate, are evaluated first. They are significant for explaining this global bioevent.  相似文献   
143.
Chen J  Wen H  Liu J  Yu C  Zhao X  Shi X  Xu G 《Molecular bioSystems》2012,8(3):871-878
Acute graft rejection is one of the most common and serious post complications in renal transplantation, noninvasive diagnosis of acute graft rejection is essential for reducing risk of surgery and timely treatment. In this study, a non-targeted metabonomics approach based on ultra performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (MS) is used to investigate the effect of acute graft rejection in rat renal transplantation on metabolism. To collect more metabolite information both hydrophilic interaction chromatography and reversed-phase liquid chromatography were used. Using the partial least squares-discriminant analysis, we found that the change of metabonome in a sham-operated group and a non-graft rejection group had a similar trend, while that of the acute graft rejection group was clearly different. Several discriminating metabolites of the acute graft rejection were identified, including creatinine, phosphatidyl-cholines, lyso-phosphatidylcholines, carnitine C16:0, free fatty acids and indoxyl sulfate etc. These discriminating metabolites suggested that acute graft rejection in renal transplantation can lead to the accumulation of creatinine in the body, and also the abnormal metabolism of phospholipids. These findings are useful to understand the mechanisms of the rejection, it also means that a UPLC-MS metabonomic approach is a suitable tool to investigate the metabolic abnormality in the acute graft rejection in renal transplantation.  相似文献   
144.
145.
146.
Communication between U1 and U2 snRNPs is critical during pre-spliceosome assembly; yet, direct connections have not been observed. To investigate this assembly step, we focused on Prp5, an RNA-dependent ATPase of the DExD/H family. We identified homologs of Saccharomyces cerevisiae Prp5 in humans (hPrp5) and Schizosaccharomyces pombe (SpPrp5), and investigated their interactions and function. Depletion and reconstitution of SpPrp5 from extracts demonstrate that ATP binding and hydrolysis by Prp5 are required for pre-spliceosome complex A formation. hPrp5 and SpPrp5 are each physically associated with both U1 and U2 snRNPs; Prp5 contains distinct U1- and U2-interacting domains that are required for pre-spliceosome assembly; and, we observe a Prp5-associated U1/U2 complex in S. pombe. Together, these data are consistent with Prp5 being a bridge between U1 and U2 snRNPs at the time of pre-spliceosome formation.  相似文献   
147.
Cs accumulation characteristics by Sorghum bicolor were investigated in hydroponic system (Cs level at 50–1000 μmol/L) and in soil (Cs-spiked concentration was 100 and 400 mg/kg soil). Two varieties of S. bicolor Cowly and Nengsi 2# grown on pot soil during the entire growth period (100 days) did not show significant differences on the height, dry weight (DW), and Cs accumulation. S. bicolor showed the potential phytoextraction ability for Cs-contaminated soil with the bioaccumulation factor (BCF) and the translocation factor (TF) values usually higher than 1 in soil system and in hydroponic system. The aerial parts of S. bicolor contributed to 86–92% of the total removed amounts of Cs from soil. Cs level in solution at 100 μmol/L gave the highest BCF and TF values of S. bicolor. Cs at low level tended to transfer to the aerial parts, whereas Cs at high level decreased the transfer ratio from root to shoot. In soil, the plant grew well when Cs spiked level was 100 mg/kg soil, but was inhibited by Cs at 400 mg/kg soil with Cs content in sorghum reaching 1147 mg/kg (roots), 2473 mg/kg (stems), and 2939 mg/kg (leaves). In hydroponic system, average Cs level in sorghum reached 5270 mg/kg (roots) and 4513 mg/kg (aerial parts), without significant damages to its biomass at 30 days after starting Cs treatment. Cs accumulation in sorghum tissues was positively correlated with the metal concentration in medium.  相似文献   
148.
Xu L  Qin W  Zhang H  Wang Y  Dou H  Yu D  Ding Y  Yang L  Wang Y 《Mutation research》2012,743(1-2):75-82
Microcystin-LR (MC-LR) is a cyclic heptapeptide that acts as a potent hepatotoxin and carcinogen. However, the mechanism of its carcinogenic action remains undetermined. In this study, MC-LR was used to induce the malignant transformation of the WRL-68 cell line. Alterations in microRNA (miRNA) expression in the transformed cell were analyzed to determine the role of miRNAs in MC-LR-induced carcinogenesis. Cultured WRL-68 cells (labeled 25MC10) were continuously exposed to a low concentration (10 μg/L) of MC-LR for 25 passages. Compared with the mock-treated parental cells, the induced 25MC10 cells exhibited a higher growth rate, resistance to serum-induced terminal differentiation, and tumorigenicity in a nude mouse xenograft test. A pilot miRNA expression array analysis was conducted on the 25MC10 cells, followed by validation of select miRNAs by RT-PCR. We found that the onco-miRNAs miR-21 and miR-221 displayed upregulated expression while the liver-specific miR-122 was downregulated. These results suggest that chronic MC-LR exposure alters the miRNA expression profile of WRL-68 cells and causes phenotypic transformation. We propose that characteristic miRNA alterations could be used as molecular targets for the development of environmental water monitoring methods.  相似文献   
149.
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.  相似文献   
150.
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental condition characterized by atypical social interaction and communication together with repetitive behaviors and restricted interests. The prevalence of ASD has been increased these years. Compelling evidence has shown that genetic factors contribute largely to the development of ASD. However, knowledge about its genetic etiology and pathogenesis is limited. Broad applications of genomics studies have revealed the importance of gene mutations at protein-coding regions as well as the interrupted non-coding regions in the development of ASD. In this review, we summarize the current evidence for the known molecular genetic basis and possible pathological mechanisms as well as the risk genes and loci of ASD. Functional studies for the underlying mechanisms are also implicated. The understanding of the genetics and genomics of ASD is important for the genetic diagnosis and intervention for this condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号