首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10501篇
  免费   875篇
  国内免费   1250篇
  2024年   31篇
  2023年   204篇
  2022年   431篇
  2021年   709篇
  2020年   485篇
  2019年   593篇
  2018年   538篇
  2017年   406篇
  2016年   501篇
  2015年   721篇
  2014年   896篇
  2013年   851篇
  2012年   1018篇
  2011年   865篇
  2010年   557篇
  2009年   495篇
  2008年   535篇
  2007年   428篇
  2006年   372篇
  2005年   331篇
  2004年   258篇
  2003年   273篇
  2002年   222篇
  2001年   125篇
  2000年   102篇
  1999年   104篇
  1998年   93篇
  1997年   63篇
  1996年   54篇
  1995年   45篇
  1994年   34篇
  1993年   34篇
  1992年   42篇
  1991年   37篇
  1990年   30篇
  1989年   28篇
  1988年   16篇
  1987年   15篇
  1986年   11篇
  1985年   11篇
  1984年   8篇
  1983年   6篇
  1982年   7篇
  1981年   6篇
  1980年   5篇
  1979年   3篇
  1976年   3篇
  1969年   3篇
  1951年   2篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
991.
992.
Zhang S  Dai H  Wan N  Moore Y  Dai Z 《PloS one》2011,6(12):e29706

Background

Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials.

Methodology/Principal Findings

Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so.

Conclusions/Significance

Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation.  相似文献   
993.
994.

Background

The evidence that red and processed meat influences colorectal carcinogenesis was judged convincing in the 2007 World Cancer Research Fund/American Institute of Cancer Research report. Since then, ten prospective studies have published new results. Here we update the evidence from prospective studies and explore whether there is a non-linear association of red and processed meats with colorectal cancer risk.

Methods and Findings

Relevant prospective studies were identified in PubMed until March 2011. For each study, relative risks and 95% confidence intervals (CI) were extracted and pooled with a random-effects model, weighting for the inverse of the variance, in highest versus lowest intake comparison, and dose-response meta-analyses. Red and processed meats intake was associated with increased colorectal cancer risk. The summary relative risk (RR) of colorectal cancer for the highest versus the lowest intake was 1.22 (95% CI  = 1.11−1.34) and the RR for every 100 g/day increase was 1.14 (95% CI  = 1.04−1.24). Non-linear dose-response meta-analyses revealed that colorectal cancer risk increases approximately linearly with increasing intake of red and processed meats up to approximately 140 g/day, where the curve approaches its plateau. The associations were similar for colon and rectal cancer risk. When analyzed separately, colorectal cancer risk was related to intake of fresh red meat (RR for 100 g/day increase  = 1.17, 95% CI  = 1.05−1.31) and processed meat (RR for 50 g/day increase  = 1.18, 95% CI  = 1.10−1.28). Similar results were observed for colon cancer, but for rectal cancer, no significant associations were observed.

Conclusions

High intake of red and processed meat is associated with significant increased risk of colorectal, colon and rectal cancers. The overall evidence of prospective studies supports limiting red and processed meat consumption as one of the dietary recommendations for the prevention of colorectal cancer.  相似文献   
995.
Xiao L  Fu ZR  Liu F  Zhang LD  Shi XM  Shen XY  Ni ZJ  Fu H  Li RD  Cao XT  Ding GS  Wang QX 《PloS one》2011,6(7):e21697
Engagement of T-cell immunoglobulin mucin (Tim)-1 on T cells with its ligand, Tim-4, on antigen presenting cells delivers positive costimulatory signals to T cells. However, the molecular mechanisms for Tim-1-mediated regulation of T-cell activation and differentiation are relatively poorly understood. Here we investigated the role of Tim-1 in T-cell responses and allograft rejection using recombinant human Tim-1 extracellular domain and IgG1-Fc fusion proteins (Tim-1-Fc). In vitro assays confirmed that Tim-1-Fc selectively binds to CD4(+) effector T cells, but not dendritic cells or natural regulatory T cells (nTregs). Tim-1-Fc was able to inhibit the responses of purified CD4(+) T cells that do not express Tim-4 to stimulation by anti-CD3/CD28 mAbs, and this inhibition was associated with reduced AKT and ERK1/2 phosphorylation, but it had no influence on nTregs. Moreover, Tim-1-Fc inhibited the proliferation of CD4(+) T cells stimulated by allogeneic dendritic cells. Treatment of recipient mice with Tim-1-Fc significantly prolonged cardiac allograft survival in a fully MHC-mismatched strain combination, which was associated with impaired Th1 response and preserved Th2 and nTregs function. Importantly, the frequency of Foxp3(+) cells in splenic CD4(+) T cells was increased, thus shifting the balance toward regulators, even though Tim-1-Fc did not induce Foxp3 expression in CD4(+)CD25(-) T cells directly. These results indicate that Tim-1-Fc can inhibit T-cell responses through an unknown Tim-1 binding partner on T cells, and it is a promising immunosuppressive agent for preventing allograft rejection.  相似文献   
996.
Growth hormone (GH)-releasing peptides (GHRP), a class of synthetic peptidyl GH secretagogues, have been reported to exert a cardioprotective effect on cardiac ischemia. However, whether GHRP have a beneficial effect on chronic heart failure (CHF) is unclear, and the present work aims to clarify this issue. At 9 wk after pressure-overload CHF was created by abdominal aortic banding in rats, one of four variants of GHRP (GHRP-1, -2, and -6 and hexarelin, 100 mug/kg) or saline was injected subcutaneously twice a day for 3 wk. Echocardiography and cardiac catheterization were performed to monitor cardiac function and obtain blood samples for hormone assay. GHRP treatment significantly improved left ventricular (LV) function and remodeling in CHF rats, as indicated by increased LV ejection fraction, LV end-systolic pressure, and diastolic posterior wall thickness and decreased LV end-diastolic pressure and LV end-diastolic dimension. GHRP also significantly alleviated development of cardiac cachexia, as shown by increases in body weight and tibial length in CHF rats. Plasma CA, renin, ANG II, aldosterone, endothelin-1, and atrial natriuretic peptide were significantly elevated in CHF rats but were significantly decreased in GHRP-treated CHF rats. GHRP suppressed cardiomyocyte apoptosis and increased cardiac GH secretagogue receptor mRNA expression in CHF rats. GHRP also decreased myocardial creatine kinase release in hypophysectomized rats subjected to acute myocardial ischemia. We conclude that chronic administration of GHRP alleviates LV dysfunction, pathological remodeling, and cardiac cachexia in CHF rats, at least in part by suppressing stress-induced neurohormonal activations and cardiomyocyte apoptosis.  相似文献   
997.
Previous work showed that random mutagenesis produced a mutant of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 containing the V106A substitution in the hydroxylase -subunit (TomA3) that changed the color of the cell suspension from wild-type brown to green in rich medium. Here, DNA shuffling was used to isolate a random TOM mutant that turned blue due to mutation TomA3 A113V. To better understand the TOM reaction mechanism, we studied the specificity of indole hydroxylation using a spectrum of colored TOM mutants expressed in Escherichia coli TG1 and formed as a result of saturation mutagenesis at TomA3 positions A113 and V106. Colonies expressing these altered enzymes ranged in color from blue through green and purple to orange; and the enzyme products were identified using thin-layer chromatography, high performance liquid chromatography, and liquid chromatography–mass spectroscopy. Derived from the single TOM template, enzymes were identified that produced primarily isoindigo (wild-type TOM), indigo (A113V), indirubin (A113I), and isatin (A113H and V106A/A113G). The discovery that wild-type TOM formed isoindigo via C-2 hydroxylation of the indole pyrrole ring makes this the first oxygenase shown to form this compound. Variant TOM A113G was unable to form indigo, indirubin, or isoindigo (did not hydroxylate the indole pyrrole ring), but produced 4-hydroxyindole and unknown yellow compounds from C-4 hydroxylation of the indole benzene ring. Mutations at V106 in addition to A113G restored C-3 indole oxidation, so along with C-2 indole oxidation, isatin, indigo, and indirubin were formed. Other TomA3 V106/A113 mutants with hydrophobic, polar, or charged amino acids in place of the Val and/or Ala residues hydroxylated indole at the C-3 and C-2 positions, forming isatin, indigo, and indirubin in a variety of distributions. Hence, for the first time, a single enzyme was genetically modified to produce a wide range of colors from indole.  相似文献   
998.
TNF-alpha is a cytokine produced during gastric mucosal injury. We examined whether TNF-alpha could promote mucosal repair by stimulation of epithelial cell proliferation and explored further the underlying mechanisms in a rat gastric mucosal epithelial cell line (RGM-1). TNF-alpha treatment (1-10 ng/ml) for 12 or 24 h significantly increased cell proliferation but did not induce apoptosis in RGM-1 cells. TNF-alpha treatment significantly increased cytosolic phospholipase A(2) and cyclooxygenase-2 (COX-2) protein expression and PGE(2) level but did not affect the protein levels of EGF, basic fibroblast growth factor, and COX-1 in RGM-1 cells. The mRNA of TNF receptor (TNF-R) 2 but not of TNF-R1 was also increased. Dexamethasone dose dependently inhibited the stimulatory effect of TNF-alpha on cell proliferation, which was associated with a significant decrease in cellular COX-2 expression and PGE(2) level. A selective COX-2 inhibitor 3-(3-fluorophenyl)-4-[4-(methylsulfonyl)phenyl]-5,5-dimethyl-(5)H-furan-2-one (DFU) by itself had no effect on basal cell proliferation but significantly reduced the stimulatory effect of TNF-alpha on RMG-1 cells. Combination of dexamethasone and DFU did not produce an additive effect. PGE(2) significantly reversed the depressive action of dexamethasone on cell proliferation. These results suggest that TNF-alpha plays a regulatory role in epithelial cell repair in the gastric mucosa via the TNF-alpha receptor and activation of the arachidonic acid/PG pathway.  相似文献   
999.
Zhang B  Wei H  Zheng X  Zhang J  Sun R  Tian Z 《Peptides》2005,26(3):405-412
NKG2D is an activating receptor expressed on most of human NK cells, one of whose ligands is MICA. Based on the crystal structure of NKG2D-MICA complex, we synthesized three short peptides (P1, P2 and P3), mimicking functional alpha1 and alpha2 domain of MICA. The inhibitory effects of three peptides on NK-92 cells, a human NK cell line against Hela cells were observed and the inhibitory percentage was 38% at maximum for P1+P2+P3 in concentration of 1nM. The same peptides had no effect on NK-92 cell against target cells lacking MICA (K562 cells line). The unrelated peptides as controls had no effect on the system. Two peptides (P2 and P3) were prolonged at one or both ends, and the longer forms of peptides exerted stronger inhibitory effects than their shorter forms. Each combination of two peptides exerted a stronger function than single peptide (P1, P2, P3), indicating that shedding of longer amino acid sequence of alpha1 domain or more domain sites of MICA are better than shorter sequence and fewer sites. P1+P2+P3 revealed the almost same inhibitory rate as the soluble MICA (sMICA). P1+P2+P3 were also able to alleviate the concanavalin A-induced murine autoimmune hepatitis in vivo, conforming the similarity of NKG2D between human and mice. The results demonstrate that MICA-mimicking peptides will be useful to search the specific functional sites for NKG2D-MICA interaction, but also promising in explaining NKG2D-related autoimmunity.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号