首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9740篇
  免费   878篇
  国内免费   1404篇
  2024年   32篇
  2023年   215篇
  2022年   443篇
  2021年   729篇
  2020年   521篇
  2019年   617篇
  2018年   545篇
  2017年   430篇
  2016年   520篇
  2015年   761篇
  2014年   878篇
  2013年   832篇
  2012年   960篇
  2011年   806篇
  2010年   524篇
  2009年   469篇
  2008年   486篇
  2007年   392篇
  2006年   326篇
  2005年   297篇
  2004年   213篇
  2003年   225篇
  2002年   184篇
  2001年   110篇
  2000年   69篇
  1999年   67篇
  1998年   73篇
  1997年   54篇
  1996年   53篇
  1995年   23篇
  1994年   21篇
  1993年   16篇
  1992年   20篇
  1991年   28篇
  1990年   19篇
  1989年   19篇
  1988年   10篇
  1987年   4篇
  1986年   9篇
  1985年   5篇
  1984年   2篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1974年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 968 毫秒
221.
222.

Background

Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment.

Methodologies/Principal Findings

To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny.

Conclusions

Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms.  相似文献   
223.
Depression is one of the most frequent neuropsychiatric comorbidities associated with opiate addiction. Mitogen activated protein kinase (MAPK) and MAPK phosphatase (MKP) are involved in drug addiction and depression. However, the potential role of MAPK and MKP in depression caused by morphine withdrawal remains unclear. We utilized a mouse model of repeated morphine administration to examine the molecular mechanisms that contribute to prolonged withdrawal induced depressive-like behaviors. Depressive-like behaviors were significant at 1 week after withdrawal and worsened over time. Phospho-ERK (extracellular signal-regulated protein kinase) was decreased and MKP-1 was elevated in the hippocampus, and JNK (c-Jun N-terminal protein kinase), p38 (p38 protein kinase) and MKP-3 were unaffected. A pharmacological blockade of MKP-1 by intra-hippocampal sanguinarine (SA) infusion prevented the development of depressive-like behaviors and resulted in relatively normal levels of MKP-1 and phospho-ERK after withdrawal. Our findings support the association between hippocampal MAPK phosphorylation and prolonged morphine withdrawal-induced depression, and emphasize the MKP-1 as an negative regulator of the ERK phosphorylation that contributes to depression.  相似文献   
224.
Human embryonic stem cells (hESCs) are pluripotent and capable of undergoing multilineage differentiation into highly specialized cells including pancreatic islet cells. Thus, they represent a novel alternative source for targeted therapies and regenerative medicine for diabetes. Significant progress has been made in differentiating hESCs toward pancreatic lineages. One approach is based on the similarities of pancreatic β cell and neuroepithelial development. Nestin-positive cells are selected as pancreatic β cell precursors and further differentiated to secrete insulin. The other approach is based on our knowledge of developmental biology in which the differentiation protocol sequentially reproduces the individual steps that are known in normal β cell ontogenesis during fetal pancreatic development. In the present study, the hESC cell line PKU1.1 was induced to differentiate into insulin-producing cells (IPCs) using both protocols. The differentiation process was dynamically investigated and the similarities and differences between both strategies were explored. Our results show that IPCs can be successfully induced with both differentiation strategies. The resulting IPCs from both protocols shared many similar features with pancreatic islet cells, but not mature, functional β cells. However, these differently-derived IPC cell types displayed specific morphologies and different expression levels of pancreatic islet development-related markers. These data not only broaden our outlook on hESC differentiation into IPCs, but also extend the full potential of these processes for regenerative medicine in diabetes.  相似文献   
225.
226.
Considering the current low level of mechanization for domestic green onion planting and the high labor intensity of artificial planting, a 2ZYX-2 green onion ditching and transplanting machine, which can complete ditching, ridging, transplanting, repression, soil covering and other operations, is designed in this study. The Central Composite test design method was carried out with the speed of the transplanting machine, the depth of the opener and the horizontal position of the opener as the experimental factors and with the qualification ratio of perpendicularity, the variation coefficient of the plant spacing and the qualification ratio of the planting depth as the test index. Through the analysis of the model interaction and response surface, the change laws that the influence the machine’s forward speed, the depth of the opener and the horizontal position of the opener were studied. The regression model was optimized by Design-Expert 8.0.6 software, and the accuracy of the predicted results was verified by experiments. The optimal working parameters showed that the forward speed of the machine was 0.06 m/s, the depth of the opener was 102 mm, and the horizontal position of the opener was 29 mm. Under conditions of optimal working parameters, the qualification rate of the verticality was 86.83%, the coefficient of variation for the plant spacing was 2.77, and the pass rate of planting depth was 88.26%. The research related to the thesis can provide a reference for the mechanized planting of green onion, which is of great significance to the cost-effectiveness of the green onion industry.  相似文献   
227.
Plant growth-promoting rhizobacteria (PGPRs) confer benefits to crops by producing volatile organic compounds (VOCs) to trigger induced systemic tolerance (IST). Here we show that Bacillus velezensis GJ11, a kind of PGPRs, produce VOCs such as 2,3-butanediol and acetoin to trigger IST and cause stomatal closure against O3 injury in tobacco plants. Compared to 2,3-butanediol, acetoin was more effective on triggering IST against O3 injury. The bdh-knockout strain GJ11Δbdh with a blocked metabolic pathway from acetoin to 2,3-butanediol produced more acetoin triggering stronger IST against O3 injury than GJ11. Both acetoin and GJ11Δbdh effectively enhance the antioxidant enzymes activity (e.g. superoxide dismutase and catalases) that is favorable for scavenging the reactive oxygen species like H2O2 in leaves after exposure to O3. Consequently, less H2O2 accumulation was observed, and reasonably less chlorophylls and proteins were damaged by H2O2 in the tobacco leaves treated with acetoin or GJ11Δbdh. The field experiment also showed that both acetoin and GJ11Δbdh could protect tobacco plants from O3 injury after application by root-drench. This study provides new insights into the role of rhizobacterial B. velezensis and its volatile component of acetoin in triggering defense responses against stresses such as O3 in plants.  相似文献   
228.
In order to study how exogenous hormones in C. lanceolata (gymnosperm) regulate somatic embryogenesis, we measured the endogenous phytohormones of two genotypes with different somatic embryogenesis efficiency and found that an increase in endogenous concentrations of IAA and ABA may be correlated to more efficient somatic embryogenesis. By applying exogenous spermidine, we found that exogenous hormones may affect somatic embryogenesis efficiency through affecting the endogenous phytohormone content. Based on these results, further studies can be conducted whereby the concentration of exogenous hormones or the levels of endogenous phytohormones by molecular methods are regulated to promote somatic embryogenesis. Our research may benefit the long-term economic output of the forestry industry and lays the foundation to studying the molecular mechanism that controls somatic embryogenesis efficiency.  相似文献   
229.
Tomato is one of the most popular horticultural crops, and many commercial tomato cultivars are particularly susceptible to Botrytis cinerea. Non-expressor of pathogenesis-related gene 1 (NPR1) is a critical component of the plant defense mechanisms. However, our understanding of how SlNPR1 influences disease resistance in tomato is still limited. In this study, two independent slnpr1 mutants were used to study the role of SlNPR1 in tomato resistance against B. cinerea. Compared to (WT), slnpr1 leaves exhibited enhanced resistance against B. cinerea with smaller lesion sizes, higher activities of chitinase (CHI), β-1, 3-glucanases (GLU) and phenylalanine ammonia-lyase (PAL), and significantly increased expressions of pathogenesis-related genes (PRs). The increased activities of peroxidase (POD), ascorbate peroxidase (APX) and decreased catalase (CAT) activities collectively regulated reactive oxygen species (ROS) homeostasis in slnpr1 mutants. The integrity of the cell wall in slnpr1 mutants was maintained. Moreover, the enhanced resistance was further reflected by induction of defense genes involved in jasmonic acid (JA) and ethylene (ET) signaling pathways. Taken together, these findings revealed that knocking out SlNPR1 resulted in increased activities of defense enzymes, changes in ROS homeostasis and integrity of cell walls, and activation of JA and ET pathways, which confers resistance against B. cinerea in tomato plants.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号