首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61236篇
  免费   17919篇
  国内免费   3882篇
  2024年   64篇
  2023年   447篇
  2022年   1107篇
  2021年   2022篇
  2020年   3227篇
  2019年   4949篇
  2018年   4966篇
  2017年   5057篇
  2016年   5355篇
  2015年   6058篇
  2014年   6177篇
  2013年   6721篇
  2012年   5127篇
  2011年   4346篇
  2010年   4911篇
  2009年   3535篇
  2008年   2828篇
  2007年   2171篇
  2006年   1958篇
  2005年   1858篇
  2004年   1639篇
  2003年   1528篇
  2002年   1317篇
  2001年   1018篇
  2000年   810篇
  1999年   701篇
  1998年   409篇
  1997年   331篇
  1996年   306篇
  1995年   248篇
  1994年   210篇
  1993年   169篇
  1992年   216篇
  1991年   172篇
  1990年   146篇
  1989年   133篇
  1988年   100篇
  1987年   95篇
  1986年   78篇
  1985年   65篇
  1984年   52篇
  1983年   53篇
  1982年   34篇
  1981年   26篇
  1979年   24篇
  1978年   25篇
  1977年   18篇
  1974年   19篇
  1973年   15篇
  1971年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
The Ptr1 (Pseudomonas tomato race 1) locus in Solanum lycopersicoides confers resistance to strains of Pseudomonas syringae pv. tomato expressing AvrRpt2 and Ralstonia pseudosolanacearum expressing RipBN. Here we describe the identification and phylogenetic analysis of the Ptr1 gene. A single recombinant among 585 F2 plants segregating for the Ptr1 locus was discovered that narrowed the Ptr1 candidates to eight nucleotide‐binding leucine‐rich repeat protein (NLR)‐encoding genes. From analysis of the gene models in the S. lycopersicoides genome sequence and RNA‐Seq data, two of the eight genes emerged as the strongest candidates for Ptr1. One of these two candidates was found to encode Ptr1 based on its ability to mediate recognition of AvrRpt2 and RipBN when it was transiently expressed with these effectors in leaves of Nicotiana glutinosa. The ortholog of Ptr1 in tomato and in Solanum pennellii is a pseudogene. However, a functional Ptr1 ortholog exists in Nicotiana benthamiana and potato, and both mediate recognition of AvrRpt2 and RipBN. In apple and Arabidopsis, recognition of AvrRpt2 is mediated by the Mr5 and RPS2 proteins, respectively. Phylogenetic analysis places Ptr1 in a distinct clade compared with Mr5 and RPS2, and it therefore appears to have arisen by convergent evolution for recognition of AvrRpt2.  相似文献   
995.
996.
In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water‐limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs), mesophyll conductance (gm) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin–Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole‐plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.  相似文献   
997.
998.
999.
Incorporating male sterility into hybrid seed production reduces its cost and ensures high varietal purity. Despite these advantages, male‐sterile lines have not been widely used to produce tomato (Solanum lycopersicum) hybrid seeds. We describe the development of a biotechnology‐based breeding platform that utilized genic male sterility to produce hybrid seeds. In this platform, we generated a novel male‐sterile tomato line by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9)‐mediated mutagenesis of a stamen‐specific gene SlSTR1 and devised a transgenic maintainer by transforming male‐sterile plants with a fertility‐restoration gene linked to a seedling‐colour gene. Offspring of crosses between a hemizygous maintainer and the homozygous male‐sterile plant segregated into 50% non‐transgenic male‐sterile plants and 50% male‐fertile maintainer plants, which could be easily distinguished by seedling colour. This system has great practical potential for hybrid seed breeding and production as it overcomes the problems intrinsic to other male‐sterility systems and can be easily adapted for a range of tomato cultivars and diverse vegetable crops.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号