首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3032篇
  免费   241篇
  2022年   18篇
  2021年   18篇
  2019年   22篇
  2018年   31篇
  2017年   19篇
  2016年   55篇
  2015年   95篇
  2014年   93篇
  2013年   116篇
  2012年   193篇
  2011年   187篇
  2010年   103篇
  2009年   91篇
  2008年   152篇
  2007年   126篇
  2006年   144篇
  2005年   145篇
  2004年   137篇
  2003年   144篇
  2002年   138篇
  2001年   36篇
  2000年   41篇
  1999年   29篇
  1998年   59篇
  1997年   31篇
  1996年   28篇
  1995年   38篇
  1994年   31篇
  1993年   31篇
  1992年   22篇
  1991年   29篇
  1990年   18篇
  1989年   25篇
  1988年   34篇
  1987年   28篇
  1986年   17篇
  1985年   15篇
  1984年   36篇
  1983年   27篇
  1982年   30篇
  1981年   32篇
  1980年   31篇
  1979年   26篇
  1978年   27篇
  1977年   25篇
  1976年   28篇
  1975年   19篇
  1973年   19篇
  1972年   19篇
  1965年   13篇
排序方式: 共有3273条查询结果,搜索用时 500 毫秒
171.
Using optimized computer models of arterial trees we demonstrate that flow heterogeneity is a necessary consequence of a uniform shear stress distribution. Model trees are generated and optimized under different modes of boundary conditions. In one mode flow is delivered to the tissue as homogeneously as possible. Although this primary goal can be achieved, resulting shear stresses between blood and the vessel walls show very large spread. In a second mode, models are optimized under the condition of uniform shear stress in all segments which in turn renders flow distribution heterogeneous. Both homogeneous perfusion and uniform shear stress are desirable goals in real arterial trees but each of these goals can only be approached at the expense of the other. While the present paper refers only to optimized models, we assume that this dual relation between the heterogeneities in flow and shear stress may represent a more general principle of vascular systems.  相似文献   
172.
Lipoprotein lipase (LPL) is a key enzyme in lipoprotein and adipocyte metabolism. Defects in LPL can lead to hypertriglyceridemia and the subsequent development of atherosclerosis. The mechanisms of regulation of this enzyme are complex and may occur at multiple levels of gene expression. Because the 3'-untranslated region (UTR) is involved in LPL translational regulation, transgenic mice were generated with adipose tissue expression of an LPL construct either with or without the proximal 3'-UTR and driven by the aP2 promoter. Both transgenic mouse colonies were viable and expressed the transgene, resulting in a 2-fold increase in LPL activity in white adipose tissue. Neither mouse colony exhibited any obvious phenotype in terms of body weight, plasma lipids, glucose, and non-esterified fatty acid levels. In the mice expressing hLPL with an intact 3'-UTR, hLPL mRNA expression approximately paralleled hLPL activity. However in the mice without the proximal 3'-UTR, hLPL mRNA was low in the setting of large amounts of hLPL protein and LPL activity. In previous studies, the 3'-UTR of LPL was critical for the inhibitory effects of constitutively expressed hormones, such as thyroid hormone and catecholamines. Therefore, these data suggest that the absence of the 3'-UTR results in a translationally unrepressed LPL, resulting in a moderate overexpression of adipose LPL activity.  相似文献   
173.
Nematodes were found to synthesize phosphorylcholine-containing molecules not present in higher organisms, i.e. phosphorylcholine-substituted glycosphingolipids and (glyco)proteins. Investigations on the biosynthesis of these structures provided first biochemical evidence for the presence of the Kennedy and Bremer-Greenberg pathways in the model organism Caenorhabditis elegans.  相似文献   
174.
Flavin adenine dinucleotide (FAD) and three different flavoproteins in aqueous solution were subjected to redox-triggered Fourier transform infrared difference spectroscopy. The acquired vibrational spectra show a great number of positive and negative peaks, pertaining to the oxidized and reduced state of the molecule, respectively. Density functional theory calculations on the B3LYP/6-31G(d) level were employed to assign several of the observed bands to vibrational modes of the isoalloxazine moiety of the flavin cofactor in both its oxidized and, for the first time, its reduced state. Prominent modes measured for oxidized FAD include nu(C(4)=O) and nu(C(2)=O) at 1716 and 1674 cm(-1), respectively, nu(C(4a)=N(5)) at 1580 cm(-1), and nu(C(10a)=N(1)) at 1548 cm(-1). Measured modes of the reduced form of FAD include nu(C(2)=O) at 1692 cm(-1), nu(C(4)=O) at 1634 cm(-1), and nu(C(4a)=C(10a)) at 1600 cm(-1). While the overall shape of the enzyme spectra is similar to the shape of the spectrum of free FAD, there are numerous differences in detail. In particular, the nu(C=N) modes of the flavin exhibit frequency shifts in the protein-bound form, most prominently for pyruvate oxidase where nu(C(10a)=N(1)) downshifts by 14 cm(-1) to 1534 cm(-1). The significance of this shift and a possible explanation in connection with the bent conformation of the flavin cofactor in this enzyme are discussed.  相似文献   
175.
176.
Nine intraepithelial ciliated cell types that are presumed to be sensory cells were identified in the epithelium of the pre- and postocular tentacles, the digital tentacles, and the rhinophore of the juvenile tetrabranchiate cephalopod Nautilus pompilius L. The morphological diversity and specialization in distribution of the different ciliated cell types analyzed by SEM methods suggest that these cells include receptors of several sensory functions. Ciliated cell types in different organs that show similar surface features were combined in named groups. The most striking cell, type I, is characterized by a tuft of long and numerous cilia. The highest density of this cell type occurs in ciliary fields in the epithelium of the lamellae of the pre- and postocular tentacles, in the olfactory pits of the rhinophores, and in the lamellae of four pairs of lateral digital tentacles, but not in the epithelium of the medial digital tentacles. The similar morphological data, together with behavioral observations on feeding habits, suggest that this cell type may serve in long-distance chemosensory function. The other ciliated cell types are solitary cells with specific spatial distributions in the various organs. Cell types with tufts of relatively short, stiff cilia (types III, IV, VIII), which are distributed in the lateral and aboral areas of the tentacles and at the base of the tentacle-like process of the rhinophore, are considered to be employed in mechanosensory transduction, while the solitary cells with bristle-like cilia at the margin of the ciliary fields (type II) and at the base of the rhinophore (type IX) may be involved in chemoreception. Histological investigation of the epithelium and the nerve structures of the different organs shows the proportion and distribution of the sensory pathways. Two different types of digital tentacles can be distinguished according to their putative functions: lateral slender digital tentacles in four pairs, of which the lowermost are the so-called long digital tentacles, participate in distance chemoreception, and the medial digital tentacles, whose terminal axial nerve cord may represent a specialized neuromechanosensory structure, appear to have contact chemoreceptive abilities.  相似文献   
177.
Abstract.— Cell-lineage trees may contain information about spiralian phylogeny, as proposed by Guralnick and Lind-berg (2001). Here we discuss this possibility further and conclude that the cell-division pattern must be known in greater detail and the coding methods refined before a possible phylogenetic signal can be identified.  相似文献   
178.
Sulfatides show structural, and possibly physiological similarities to gangliosides. Kidney dysfunction might be correlated with changes in sulfatides, the major acidic glycosphingolipids in this organ. To elucidate their in vivo metabolic pathway these compounds were analyzed in mice afflicted with inherited glycosphingolipid disorders. The mice under study lacked the genes encoding either beta-hexosaminidase alpha-subunit (Hexa-/-), the beta-hexosaminidase beta-subunit (Hexb-/-), both beta-hexosaminidase alpha and beta-subunits (Hexa-/- and Hexb-/-), GD3 synthase (GD3S-/-), GD3 synthase and GalNAc transferase (GD3S-/- and GalNAcT-/-), GM2 activator protein (Gm2a-/-), or arylsulfatase A (ASA-/-). Quantification of the sulfatides, I(3)SO(3)(-)-GalCer (SM4s), II(3)SO(3)(-)-LacCer (SM3), II(3)SO(3)(-)-Gg(3)Cer (SM2a), and IV(3,) II(3)-(SO(3)(-))(2)-Gg(4)Cer (SB1a), was performed by nano-electrospray tandem mass spectrometry. We conclude for the in vivo situation in mouse kidneys that: 1) a single enzyme (GalNAc transferase) is responsible for the synthesis of SM2a and GM2 from SM3 and GM3, respectively. 2) In analogy to GD1a, SB1a is degraded via SM2a. 3) SM2a is hydrolyzed to SM3 by beta-hexosaminidase S (Hex S) and Hex A, but not Hex B. Both enzymes are supported by GM2-activator protein. 4) Arylsulfatase A is required to degrade SB1a. It is probably the sole sphingolipid-sulfatase cleaving the galactosyl-3-sulfate bond. In addition, a human Tay-Sachs patient's liver was investigated, which showed accumulation of SM2a along with GM2 storage. The different ceramide compositions of both compounds indicated they were probably derived from different cell types. These data demonstrate that in vivo the sulfatides of the ganglio-series follow the same metabolic pathways as the gangliosides with the replacement of sulfotransferases and sulfatases by sialyltransferases and sialidases. Furthermore, a novel neutral GSL, IV(6)GlcNAcbeta-Gb(4)Cer, was found to accumulate only in Hexa-/- and Hexb-/- mouse kidneys. From this we conclude that Hex S also efficiently cleaves terminal beta1-6-linked HexNAc residues from neutral GSLs in vivo.  相似文献   
179.
180.
Formyltransferase catalyzes the reversible formation of formylmethanofuran from N(5)-formyltetrahydromethanopterin and methanofuran, a reaction involved in the C1 metabolism of methanogenic and sulfate-reducing archaea. The crystal structure of the homotetrameric enzyme from Methanopyrus kandleri (growth temperature optimum 98 degrees C) has recently been solved at 1.65 A resolution. We report here the crystal structures of the formyltransferase from Methanosarcina barkeri (growth temperature optimum 37 degrees C) and from Archaeoglobus fulgidus (growth temperature optimum 83 degrees C) at 1.9 A and 2.0 A resolution, respectively. Comparison of the structures of the three enzymes revealed very similar folds. The most striking difference found was the negative surface charge, which was -32 for the M. kandleri enzyme, only -8 for the M. barkeri enzyme, and -11 for the A. fulgidus enzyme. The hydrophobic surface fraction was 50% for the M. kandleri enzyme, 56% for the M. barkeri enzyme, and 57% for the A. fulgidus enzyme. These differences most likely reflect the adaptation of the enzyme to different cytoplasmic concentrations of potassium cyclic 2,3-diphosphoglycerate, which are very high in M. kandleri (>1 M) and relatively low in M. barkeri and A. fulgidus. Formyltransferase is in a monomer/dimer/tetramer equilibrium that is dependent on the salt concentration. Only the dimers and tetramers are active, and only the tetramers are thermostable. The enzyme from M. kandleri is a tetramer, which is active and thermostable only at high concentrations of potassium phosphate (>1 M) or potassium cyclic 2,3-diphosphoglycerate. Conversely, the enzyme from M. barkeri and A. fulgidus already showed these properties, activity and stability, at much lower concentrations of these strong salting-out salts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号