首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3055篇
  免费   245篇
  2022年   18篇
  2021年   18篇
  2019年   22篇
  2018年   31篇
  2017年   19篇
  2016年   56篇
  2015年   96篇
  2014年   93篇
  2013年   116篇
  2012年   194篇
  2011年   187篇
  2010年   103篇
  2009年   91篇
  2008年   154篇
  2007年   126篇
  2006年   144篇
  2005年   147篇
  2004年   140篇
  2003年   151篇
  2002年   140篇
  2001年   38篇
  2000年   40篇
  1999年   31篇
  1998年   59篇
  1997年   32篇
  1996年   32篇
  1995年   38篇
  1994年   32篇
  1993年   32篇
  1992年   22篇
  1991年   28篇
  1990年   18篇
  1989年   25篇
  1988年   33篇
  1987年   28篇
  1986年   17篇
  1985年   15篇
  1984年   36篇
  1983年   27篇
  1982年   30篇
  1981年   32篇
  1980年   31篇
  1979年   26篇
  1978年   28篇
  1977年   25篇
  1976年   28篇
  1975年   19篇
  1973年   19篇
  1972年   19篇
  1965年   13篇
排序方式: 共有3300条查询结果,搜索用时 156 毫秒
241.
A total of 22 genes from the genome of Salinibacter ruber strain M31 were selected in order to study the phylogenetic position of this species based on protein alignments. The selection of the genes was based on their essential function for the organism, dispersion within the genome, and sufficient informative length of the final alignment. For each gene, an individual phylogenetic analysis was performed and compared with the resulting tree based on the concatenation of the 22 genes, which rendered a single alignment of 10,757 homologous positions. In addition to the manually chosen genes, an automatically selected data set of 74 orthologous genes was used to reconstruct a tree based on 17,149 homologous positions. Although single genes supported different topologies, the tree topology of both concatenated data sets was shown to be identical to that previously observed based on small subunit (SSU) rRNA gene analysis, in which S. ruber was placed together with Bacteroidetes. In both concatenated data sets the bootstrap was very high, but an analysis with a gradually lower number of genes indicated that the bootstrap was greatly reduced with less than 12 genes. The results indicate that tree reconstructions based on concatenating large numbers of protein coding genes seem to produce tree topologies with similar resolution to that of the single 16S rRNA gene trees. For classification purposes, 16S rRNA gene analysis may remain as the most pragmatic approach to infer genealogic relationships.  相似文献   
242.
A bacterium, strain DP-45, capable of degrading 2,5-dimethylpyrazine (2,5-DMP) was isolated and identified as Rhodococcus erythropolis. The strain also grew on many other pyrazines found in the waste gases of food industries, like 2,3-dimethylpyrazine (2,3-DMP), 2,6-dimethylpyrazine (2,6-DMP), 2-ethyl-5(6)-dimethylpyrazine (EMP), 2-ethylpyrazine (EP), 2-methylpyrazine (MP), and 2,3,5-trimethylpyrazine (TMP). The strain utilized 2,5-DMP as sole source of carbon and nitrogen and grew optimally at 25°C with a doubling time of 7.6 h. The degradation of 2,5-DMP was accompanied by the growth of the strain and by the accumulation of a first intermediate, identified as 2-hydroxy-3,6-dimethylpyrazine (HDMP). The disappearance of HDMP was accompanied by the release of ammonium into the medium. No other metabolite was detected. The degradation of 2,5-DMP and HDMP by strain DP-45 required molecular oxygen. The expression of the first enzyme in the pathway was induced by 2,5-DMP and HDMP whereas the second enzyme was constitutively expressed. The activity of the first enzyme was inhibited by diphenyliodonium (DPI), a flavoprotein inhibitor, methimazole, a competitive inhibitor of flavin-containing monooxygenases, and by cytochrome P450 inhibitors, 1-aminobenzotriazole (ABT) and phenylhydrazine (PHZ). The activity of the second enzyme was inhibited by DPI, ABT, and PHZ. Sodium tungstate, a specific antagonist of molybdate, had no influence on growth and consumption of 2,5-DMP by strain DP-45. These results led us to propose that a flavin-dependent monooxygenase or a cytochrome P450-dependent monooxygenase rather than a molybdenum hydroxylase catalyzed the initial hydroxylation step and that a cytochrome P450 enzyme is responsible for the transformation of HDMP in the second step.  相似文献   
243.
Vertical distribution of picoeukaryotic diversity in the Sargasso Sea   总被引:1,自引:0,他引:1  
Eukaryotic molecular diversity within the picoplanktonic size-fraction has primarily been studied in marine surface waters. Here, the vertical distribution of picoeukaryotic diversity was investigated in the Sargasso Sea from euphotic to abyssal waters, using size-fractionated samples (< 2 microm). 18S rRNA gene clone libraries were used to generate sequences from euphotic zone samples (deep chlorophyll maximum to the surface); the permanent thermocline (500 m); and the pelagic deep-sea (3000 m). Euphotic zone and deep-sea data contrasted strongly, the former displaying greater diversity at the first-rank taxon level, based on 232 nearly full-length sequences. Deep-sea sequences belonged almost exclusively to the Alveolata and Radiolaria, while surface samples also contained known and putative photosynthetic groups, such as unique Chlorarachniophyta and Chrysophyceae sequences. Phylogenetic analyses placed most Alveolata and Stramenopile sequences within previously reported 'environmental' clades, i.e. clades within the Novel Alveolate groups I and II (NAI and NAII), or the novel Marine Stramenopiles (MAST). However, some deep-sea NAII formed distinct, bootstrap supported clades. Stramenopiles were recovered from the euphotic zone only, although many MAST are reportedly heterotrophic, making the observed distribution a point for further investigation. An unexpectedly high proportion of radiolarian sequences were recovered. From these, five environmental radiolarian clades, RAD-I to RAD-V, were identified. RAD-IV and RAD-V were composed of Taxopodida-like sequences, with the former solely containing Sargasso Sea sequences, although from all depth zones sampled. Our findings highlight the vast diversity of these protists, most of which remain uncultured and of unknown ecological function.  相似文献   
244.
245.
Recently, unusual non-regulated ATP-dependent 6-phosphofructokinases (PFK) that belong to the PFK-B family have been described for the hyperthermophilic archaea Desulfurococcus amylolyticus and Aeropyrum pernix. Putative homologues were found in genomes of several archaea including the hyperthermophilic archaeon Methanocaldococcus jannaschii. In this organism, open reading frame MJ0406 had been annotated as a PFK-B sugar kinase. The gene encoding MJ0406 was cloned and functionally expressed in Escherichia coli. The purified recombinant enzyme is a homodimer with an apparent molecular mass of 68 kDa composed of 34 kDa subunits. With a temperature optimum of 85°C and a melting temperature of 90°C, the M. jannaschii nucleotide kinase represents one of the most thermoactive and thermostable members of the PFK-B family described so far. The recombinant enzyme was characterized as a functional nucleoside kinase rather than a 6-PFK. Inosine, guanosine, and cytidine were the most effective phosphoryl acceptors. Besides, adenosine, thymidine, uridin and xanthosine were less efficient. Extremely low activity was found with fructose-6-phosphate. Further, the substrate specificity of closely related PFK-Bs from D. amylolyticus and A. pernix were reanalysed.  相似文献   
246.
The larval arms of echinoid plutei are used for locomotion and feeding. They are composed of internal calcite skeletal rods covered by an ectoderm layer bearing a ciliary band. Skeletogenesis includes an autonomous molecular differentiation program in primary mesenchyme cells (PMCs), initiated when PMCs leave the vegetal plate for the blastocoel, and a patterning of the differentiated skeletal units that requires molecular cues from the overlaying ectoderm. The arms represent a larval feature that arose in the echinoid lineage during the Paleozoic and offers a subject for the study of gene co-option in the evolution of novel larval features. We isolated new molecular markers in two closely related but differently developing species, Heliocidaris tuberculata and Heliocidaris erythrogramma. We report the expression of a larval arm-associated ectoderm gene tetraspanin, as well as two new PMC markers, advillin and carbonic anhydrase. Tetraspanin localizes to the animal half of blastula stage H. tuberculata and then undergoes a restriction into the putative oral ectoderm and future location of the postoral arms, where it continues to be expressed at the leading edge of both the postoral and anterolateral arms. In H. erythrogramma, its expression initiates in the animal half of blastulae and expands over the entire ectoderm from gastrulation onward. Advillin and carbonic anhydrase are upregulated in the PMCs postgastrulation and localized to the leading edge of the growing larval arms of H. tuberculata but do not exhibit coordinated expression in H. erythrogramma larvae. The tight spatiotemporal regulation of these genes in H. tuberculata along with other ontogenetic and phylogenetic evidence suggest that pluteus arms are novel larval organs, distinguishable from the processes of skeletogenesis per se. The dissociation of expression control in H. erythrogramma suggest that coordinate gene expression in H. tuberculata evolved as part of the evolution of pluteus arms, and is not required for larval or adult development.  相似文献   
247.
248.
Foraging honeybees (Apis mellifera) are well known to fly straight from the hive, their primary hub, to distal goals as well as between familiar feeding sites. More recently, it was shown that a distal feeding site may be used as a secondary hub. If not fully satiated, the foraging bee may decide to depart the first feeding site in a new compass direction straight to one of many other feeding sites (inter‐patch foraging). Using a recently developed recording method, we discovered that the chosen departure direction at a secondary hub can be guided exclusively by either celestial or terrestrial compass cues. Given our data, we draw two theoretical inferences. First, the bees must be capable of learning and remembering multiple, spatially distinct, navigation vectors between the hive and among multiple feeding sites. Second, this documented and useful representation of multiple navigation vectors between multiple, identified target locations logically implies composite place‐vector mapping, stored in long‐term memory.  相似文献   
249.
Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3‐targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3‐dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3‐targeted sites to chemical acetylation in vitro and fasting‐induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low‐level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues.  相似文献   
250.
Lipid droplets (LDs) of hepatic stellate cells (HSCs) contain large amounts of vitamin A [in the form of retinyl esters (REs)] as well as other neutral lipids such as TGs. During times of insufficient vitamin A availability, RE stores are mobilized to ensure a constant supply to the body. To date, little is known about the enzymes responsible for the hydrolysis of neutral lipid esters, in particular of REs, in HSCs. In this study, we aimed to identify LD-associated neutral lipid hydrolases by a proteomic approach using the rat stellate cell line HSC-T6. First, we loaded cells with retinol and FAs to promote lipid synthesis and deposition within LDs. Then, LDs were isolated and lipid composition and the LD proteome were analyzed. Among other proteins, we found perilipin 2, adipose TG lipase (ATGL), and comparative gene identification-58 (CGI-58), known and established LD proteins. Bioinformatic search of the LD proteome for α/β-hydrolase fold-containing proteins revealed no yet uncharacterized neutral lipid hydrolases. In in vitro activity assays, we show that rat (r)ATGL, coactivated by rat (r)CGI-58, efficiently hydrolyzes TGs and REs. These findings suggest that rATGL and rCGI-58 are LD-resident proteins in HSCs and participate in the mobilization of both REs and TGs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号