首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   35篇
  2023年   3篇
  2021年   13篇
  2020年   3篇
  2019年   9篇
  2018年   16篇
  2017年   10篇
  2016年   9篇
  2015年   26篇
  2014年   19篇
  2013年   27篇
  2012年   45篇
  2011年   41篇
  2010年   25篇
  2009年   20篇
  2008年   23篇
  2007年   18篇
  2006年   13篇
  2005年   14篇
  2004年   14篇
  2003年   8篇
  2002年   10篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   4篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
排序方式: 共有420条查询结果,搜索用时 15 毫秒
51.
Heckler EJ  Alon A  Fass D  Thorpe C 《Biochemistry》2008,47(17):4955-4963
The flavoprotein quiescin-sulfhydryl oxidase (QSOX) rapidly inserts disulfide bonds into unfolded, reduced proteins with the concomitant reduction of oxygen to hydrogen peroxide. This study reports the first heterologous expression and enzymological characterization of a human QSOX1 isoform. Like QSOX isolated from avian egg white, recombinant HsQSOX1 is highly active toward reduced ribonuclease A (RNase) and dithiothreitol but shows a >100-fold lower k cat/ K m for reduced glutathione. Previous studies on avian QSOX led to a model in which reducing equivalents were proposed to relay through the enzyme from the first thioredoxin domain (C70-C73) to a distal disulfide (C509-C512), then across the dimer interface to the FAD-proximal disulfide (C449-C452), and finally to the FAD. The present work shows that, unlike the native avian enzyme, HsQSOX1 is monomeric. The recombinant expression system enabled construction of the first cysteine mutants for mechanistic dissection of this enzyme family. Activity assays with mutant HsQSOX1 indicated that the conserved distal C509-C512 disulfide is dispensable for the oxidation of reduced RNase or dithiothreitol. The four other cysteine residues chosen for mutagenesis, C70, C73, C449, and C452, are all crucial for efficient oxidation of reduced RNase. C452, of the proximal disulfide, is shown to be the charge-transfer donor to the flavin ring of QSOX, and its partner, C449, is expected to be the interchange thiol, forming a mixed disulfide with C70 in the thioredoxin domain. These data demonstrate that all the internal redox steps occur within the same polypeptide chain of mammalian QSOX and commence with a direct interaction between the reduced thioredoxin domain and the proximal disulfide of the Erv/ALR domain.  相似文献   
52.
53.
54.
55.
Identifying metaphorical language-use (e.g., sweet child) is one of the challenges facing natural language processing. This paper describes three novel algorithms for automatic metaphor identification. The algorithms are variations of the same core algorithm. We evaluate the algorithms on two corpora of Reuters and the New York Times articles. The paper presents the most comprehensive study of metaphor identification in terms of scope of metaphorical phrases and annotated corpora size. Algorithms’ performance in identifying linguistic phrases as metaphorical or literal has been compared to human judgment. Overall, the algorithms outperform the state-of-the-art algorithm with 71% precision and 27% averaged improvement in prediction over the base-rate of metaphors in the corpus.  相似文献   
56.

Key message

NGS-assisted super pooling emerging as powerful tool to accelerate gene mapping and haplotype association analysis within target region uncovering specific linkage SNPs or alleles for marker-assisted gene pyramiding.

Abstract

Conventional gene mapping methods to identify genes associated with important agronomic traits require significant amounts of financial support and time. Here, a single nucleotide polymorphism (SNP)-based mapping approach, RNA-Seq and SNP array assisted super pooling analysis, was used for rapid mining of a candidate genomic region for stripe rust resistance gene Yr26 that has been widely used in wheat breeding programs in China. Large DNA and RNA super-pools were genotyped by Wheat SNP Array and sequenced by Illumina HiSeq, respectively. Hundreds of thousands of SNPs were identified and then filtered by multiple filtering criteria. Among selected SNPs, over 900 were found within an overlapping interval of less than 30 Mb as the Yr26 candidate genomic region in the centromeric region of chromosome arm 1BL. The 235 chromosome-specific SNPs were converted into KASP assays to validate the Yr26 interval in different genetic populations. Using a high-resolution mapping population (>?30,000 gametes), we confined Yr26 to a 0.003-cM interval. The Yr26 target region was anchored to the common wheat IWGSC RefSeq v1.0 and wild emmer WEWSeq v.1.0 sequences, from which 488 and 454 kb fragments were obtained. Several candidate genes were identified in the target genomic region, but there was no typical resistance gene in either genome region. Haplotype analysis identified specific SNPs linked to Yr26 and developed robust and breeder-friendly KASP markers. This integration strategy can be applied to accelerate generating many markers closely linked to target genes/QTL for a trait of interest in wheat and other polyploid species.
  相似文献   
57.
All-male populations of the freshwater prawn Macrobrachium rosenbergii were recently produced by a novel temporal RNA interference (RNAi)-based biotechnology for aquaculture purposes. This biotechnology opens the way to the wide use of all-male prawn populations as sustainable biocontrol agents against invading populations of freshwater snails, for which there is currently no environmentally friendly solution. Among the most damaging of the invasive freshwater snail species are the apple snails (Pomacea spp.), which inflict major damage on natural ecosystems and rice fields. The proposed use of all-male prawn populations as environmentally friendly biocontrol agents against invasive freshwater snails has several advantages: efficient predation by the prawns over a wide range of freshwater snails, the ready availability of the prawns, and the monosex non-reproductive nature of the biocontrol agents. Since the aquatic predators are strongly size selective, we quantified the predation rate as a function of body size of both predator and prey (M. rosenbergii and P. caniculata). Medium-sized and large prawns (~10–30 g) efficiently preyed small and medium-sized snails (up to 15 mm), while small prawns (up to 4 g) immediately and completely eradicated snail hatchlings. Medium-sized prawns (~22 g) exterminated a significant fraction of snail biomass within 24 h (up to 58% of their body mass) after being introduced into a tank of snails. A typical ‘climbing-to-the surface’ anti-predator behavior of the snails was recorded. The potential of all-male prawns as efficient biocontrol agents over hatchling and adult apple snails as part of an integrated pest management program is discussed. Our experiments set the stage for evaluating the ecological and economic implications of this generic solution for a wide variety of habitats.  相似文献   
58.
The polysaccharide and biopolymer, beta-glucan, has been used for the purpose of enhancing immunity and its use as a drug delivery system has been diversified. Betaglucan, a triple helix structure, is unstructured to single strands by heat, DMSO or NaOH. Synthesis of beta-glucan nanoparticles using DMSO and water is easy and fast, but its size is limited. In this study, beta-glucan nanoparticles (GluNPs) were prepared by slicing beta-glucan into low molecular weight using various concentrations of Trifluoroacetic acid (TFA). TFA-treated GluNPs showed a minimum size of 250 nm. In addition, there is no abnormality in the characteristic of the functional groups of the nanoparticle surface after the acid treatment allowing GluNPs use in immune cell activation. Also, the efficiency of GluNPs as a drug or DNA carrier was confirmed by inserting ssDNA into the glucan triple helix structure. Beta-glucan nanoparticles developed in this study would be expected to be used for genetic material delivery and immune response enhancement.  相似文献   
59.
The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It was formerly proposed that dormancy is maintained by abscisic acid (ABA)‐mediated repression of bud–meristem activity and that removal of this repression triggers dormancy release. It was also proposed that such removal of repression may be achieved via natural or artificial up‐regulation of VvA8H‐CYP707A4, which encodes ABA 8′‐hydroxylase, and is the most highly expressed paralog in grapevine buds. The current study further examines these assumptions, and its experiments reveal that (a) hypoxia and ethylene, stimuli of bud dormancy release, enhance expression of VvA8H‐CYP707A4 within grape buds, (b) the VvA8H‐CYP707A4 protein accumulates during the natural transition to the dormancy release stage, and (c) transgenic vines overexpressing VvA8H‐CYP707A4 exhibit increased ABA catabolism and significant enhancement of bud break in controlled and natural environments and longer basal summer laterals. The results suggest that VvA8H‐CYP707A4 functions as an ABA degrading enzyme, and are consistent with a model in which the VvA8H‐CYP707A4 level in the bud is up‐regulated by natural and artificial bud break stimuli, which leads to increased ABA degradation capacity, removal of endogenous ABA‐mediated repression, and enhanced regrowth. Interestingly, it also hints at sharing of regulatory steps between latent and lateral bud outgrowth.  相似文献   
60.
Extracellular vesicles are produced by organisms from all kingdoms and serve a myriad of functions, many of which involve cell-cell signaling, especially during stress conditions and host-pathogen interactions. In the marine environment, communication between microorganisms can shape trophic level interactions and population succession, yet we know very little about the involvement of vesicles in these processes. In a previous study, we showed that vesicles produced during viral infection by the ecologically important model alga Emiliania huxleyi, could act as a pro-viral signal, by expediting infection and enhancing the half-life of the virus in the extracellular milieu. Here, we expand our laboratory findings and show the effect of vesicles on natural populations of E. huxleyi in a mesocosm setting. We profile the small-RNA (sRNA) cargo of vesicles that were produced by E. huxleyi during bloom succession, and show that vesicles applied to natural assemblages expedite viral infection and prolong the half-life of this major mortality agent of E. huxleyi. We subsequently reveal that exposure of the natural assemblage to E. huxleyi-derived vesicles modulates not only host-virus dynamics, but also other components of the microbial food webs, thus emphasizing the importance of extracellular vesicles to microbial interactions in the marine environment.Subject terms: Virus-host interactions, Microbial ecology, Water microbiology  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号