首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   821篇
  免费   89篇
  国内免费   1篇
  911篇
  2023年   1篇
  2022年   2篇
  2021年   12篇
  2020年   6篇
  2019年   6篇
  2018年   13篇
  2017年   10篇
  2016年   21篇
  2015年   32篇
  2014年   50篇
  2013年   49篇
  2012年   62篇
  2011年   65篇
  2010年   39篇
  2009年   34篇
  2008年   52篇
  2007年   54篇
  2006年   52篇
  2005年   44篇
  2004年   37篇
  2003年   64篇
  2002年   43篇
  2001年   13篇
  2000年   19篇
  1999年   24篇
  1998年   18篇
  1997年   11篇
  1996年   9篇
  1995年   7篇
  1994年   4篇
  1993年   16篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
  1972年   1篇
  1963年   1篇
  1930年   1篇
排序方式: 共有911条查询结果,搜索用时 0 毫秒
71.
Wolbachia pipientis are obligate endosymbionts that infect a wide range of insect and other arthropod species. They act as reproductive parasites by manipulating the host reproduction machinery to enhance their own transmission. This unusual phenotype is thought to be a consequence of the actions of secreted Wolbachia proteins that are likely to contain disulfide bonds to stabilize the protein structure. In bacteria, the introduction or isomerization of disulfide bonds in proteins is catalyzed by Dsb proteins. The Wolbachia genome encodes two proteins, α-DsbA1 and α-DsbA2, that might catalyze these steps. In this work we focussed on the 234 residue protein α-DsbA1; the gene was cloned and expressed in Escherichia coli, the protein was purified and its identity confirmed by mass spectrometry. The sequence identity of α-DsbA1 for both dithiol oxidants (E. coli DsbA, 12%) and disulfide isomerases (E. coli DsbC, 14%) is similar. We therefore sought to establish whether α-DsbA1 is an oxidant or an isomerase based on functional activity. The purified α-DsbA1 was active in an oxidoreductase assay but had little isomerase activity, indicating that α-DsbA1 is DsbA-like rather than DsbC-like. This work represents the first successful example of the characterization of a recombinant Wolbachia protein. Purified α-DsbA1 will now be used in further functional studies to identify protein substrates that could help explain the molecular basis for the unusual Wolbachia phenotypes, and in structural studies to explore its relationship to other disulfide oxidoreductase proteins.  相似文献   
72.
73.
Insulin resistance is a risk factor for various age-related diseases. In the Leiden Longevity study, we recruited long-lived siblings and their offspring. Previously, we showed that, compared to controls, the offspring of long-lived siblings had a better glucose tolerance. Here, we compared groups of offspring from long-lived siblings and controls for the relation between insulin and glucose in nonfasted serum (n = 1848 subjects) and for quantitation of insulin action using a two-step hyperinsulinemic-euglycemic clamp (n = 24 subjects). Groups of offspring and controls were similar with regard to sex distribution, age, and body mass index. We observed a positive bi-phasic linear relationship between ln (insulin) levels and nonfasted glucose with a steeper slope from 10.7mU L(-1) insulin onwards in controls compared to offspring (P = 0.02). During the clamp study, higher glucose infusion rate was required to maintain euglycemia during high-dose insulin infusion (P = 0.036) in offspring, reflecting higher whole-body insulin sensitivity. After adjustment for sex, age, and fat mass, the insulin-mediated glucose disposal rate (GDR) was higher in offspring than controls (42.5 ± 2.7 vs. 33.2 ± 2.7 micromol kg(-1) min(-1) , mean ± SE, P = 0.025). The insulin-mediated suppression of endogenous glucose production and lipolysis did not differ between groups (all P > 0.05). Furthermore, GDR was significantly correlated with the mean age of death of the parents. In conclusion, offspring from long-lived siblings are marked by enhanced peripheral glucose disposal. Future research will focus on identifying the underlying biomolecular mechanisms, with the aim to promote health in old age.  相似文献   
74.
75.
76.
Phytoplankton experience a continuously changing fluid environment and the response to this is reflected at individual and community levels. The large-scale motions of winds, waves and artificial circulations are coupled by turbulence to the viscous small-scale environment of the phytoplankton cell. To investigate the significance of turbulence in the ecology of Microcystis aeruginosa, cultures were exposed to turbulent conditions using a vertically oscillating grid for a period of 7 days under controlled laboratory conditions. M. aeruginosa was exposed to a range of turbulent intensities, by adjusting the frequency of oscillation from 1 to 4 Hz. To improve the resolution of scale between turbulence phenomena and phytoplankton, flow cytometry and fluorescent probes were used to assess the response of M. aeruginosa. Metabolic activity and cell viability were monitored daily in both the turbulent cultures and quiescent control cultures using the FDA and Sytox green fluorescent probes, respectively. Initially, low turbulence levels generated by the grid at frequencies of 1 and 2 Hz stimulated metabolic activity, and did not affect cell viability compared to the control quiescent cultures. However, higher levels of turbulence generated by the grid at frequencies of 3 and 4 Hz were deleterious to metabolic activity and viability. Metabolic activity significantly decreased and over 85 % of cells were nonviable after 96 h at a grid oscillation of 4 Hz. It was concluded that due to the long lag time (>96 h) and high intensities needed to exert a deleterious effect, small-scale turbulence is unlikely to be a significant factor controlling M. aeruginosa compared to large scale motion which lead to changes in light and nutrient conditions.  相似文献   
77.
78.
Aspects of renal physiology were examined to test the hypothesis that two cryptic species of the genus Mastomys (Mastomys natalensis and Mastomys coucha) are geographically separated by differences in aridity tolerance. Laboratory-bred females of each species were subjected to different levels of salinity in their water source (distilled water, 0.9% NaCl, and 1.5% NaCl; 10 conspecifics in each group) from weaning until sexual maturity. Individuals of the two species exhibited similar rates of water consumption and urine production. The salinity treatments caused sodium diuresis in both species, evident in increased urine volume, decreased osmolality and increased osmotic output. Urine concentration, kidney mass and kidney relative medullary area (RMA) did not differ between species. The results of our study do not support the hypothesis that differences in osmoregulatory ability separate these two cryptic species. Nor do they support the use of salt loading to elicit maximum urine concentrations in mammals.  相似文献   
79.
Leaks and isotopic disequilibria represent potential errors and artefacts during combined measurements of gas exchange and carbon isotope discrimination (Δ). This paper presents new protocols to quantify, minimize, and correct such phenomena. We performed experiments with gradients of CO2 concentration (up to ±250 μmol mol?1) and δ13CCO2 (34‰), between a clamp‐on leaf cuvette (LI‐6400) and surrounding air, to assess (1) leak coefficients for CO2, 12CO2, and 13CO2 with the empty cuvette and with intact leaves of Holcus lanatus (C3) or Sorghum bicolor (C4) in the cuvette; and (2) isotopic disequilibria between net photosynthesis and dark respiration in light. Leak coefficients were virtually identical for 12CO2 and 13CO2, but ~8 times higher with leaves in the cuvette. Leaks generated errors on Δ up to 6‰ for H. lanatus and 2‰ for S. bicolor in full light; isotopic disequilibria produced similar variation of Δ. Leak errors in Δ in darkness were much larger due to small biological : leak flux ratios. Leak artefacts were fully corrected with leak coefficients determined on the same leaves as Δ measurements. Analysis of isotopic disequilibria enabled partitioning of net photosynthesis and dark respiration, and indicated inhibitions of dark respiration in full light (H. lanatus: 14%, S. bicolor: 58%).  相似文献   
80.
The primary component of the sex pilus encoded by IncP (RP4) and Ti plasmids has been identified as a circular pilin protein with a peptide bond between the amino and carboxyl terminus. Here, we review the key experiments that led to this discovery, and the present mechanistic model for pilin-precursor processing and the cyclization reaction. In addition, we discuss the implications for horizontal gene transfer in bacterial conjugation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号