首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   11篇
  123篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   7篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   7篇
  2004年   9篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   6篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1991年   3篇
  1989年   4篇
  1988年   2篇
  1986年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1979年   4篇
  1978年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有123条查询结果,搜索用时 48 毫秒
21.
Sea stars adhere strongly but temporarily to underwater substrata via the secretion of a blend of proteins, forming an adhesive footprint that they leave on the surface after detachment. Their tube feet enclose a duo-gland adhesive system comprising two types of adhesive cells, contributing different layers of the footprint and de-adhesive cells. In this study, we characterized the catalogue of sea star footprint proteins (Sfps) in the species Asterias rubens to gain insights in their potential function. We identified 16 Sfps and mapped their expression to type 1 and/or type 2 adhesive cells or to de-adhesive cells by double fluorescent in situ hybridization. Based on their cellular expression pattern and their conserved functional domains, we propose that the identified Sfps serve different functions during attachment, with two Sfps coupling to the surface, six providing cohesive strength and the rest forming a binding matrix. Immunolabelling of footprints with antibodies directed against one protein of each category confirmed these roles. A de-adhesive gland cell-specific astacin-like proteinase presumably weakens the bond between the adhesive material and the tube foot surface during detachment. Overall, we provide a model for temporary adhesion in sea stars, including a comprehensive list of the proteins involved.  相似文献   
22.
The survival and behavior of Cupriavidus metallidurans strain CH34 were tested in space. In three spaceflight experiments, during three separate visits to the ‘International Space Station’ (ISS), strain CH34 was grown for 10–12 days at ambient temperature on mineral agar medium. Space- and earth-grown cells were compared post-flight by flow cytometry and using 2D-gel protein analysis. Pre-, in- and post-flight incubation conditions and experiment design had a significant impact on the survival and growth of CH34 in space. In the CH34 cells returning from spaceflight, 16 proteins were identified which were present in higher concentration in cells developed in spaceflight conditions. These proteins were involved in a specific response of CH34 to carbon limitation and oxidative stress, and included an acetone carboxylase subunit, fructose biphosphate aldolase, a DNA protection during starvation protein, chaperone protein, universal stress protein, and alkyl hydroperoxide reductase. The reproducible observation of the over-expression of these same proteins in multiple flight experiments, indicated that the CH34 cells could experience a substrate limitation and oxidative stress in spaceflight where cells and substrates are exposed to lower levels of gravity and higher doses of ionizing radiation. Bacterium C. metallidurans CH34 was able to grow normally under spaceflight conditions with very minor to no effects on cell physiology, but nevertheless specifically altered the expression of a few proteins in response to the environmental changes.  相似文献   
23.
Fluorescent tagging is a powerful tool for imaging proteins in living cells. However, the steric effects imposed by fluorescent tags impair the behavior of many proteins. Here, we report a novel technique, Instant with DTT, EDT, And Low temperature (IDEAL)-labeling, for rapid and specific FlAsH-labeling of tetracysteine-tagged cell surface proteins by using prion protein (PrP) and amyloid precursor protein (APP) as models. In prion-infected cells, FlAsH-labeled tetracysteine-tagged PrP converted from the normal isoform (PrPsen) to the disease-associated isoform (PrPres), suggesting minimal steric effects of the tag. Pulse-chase analysis of PrP and APP by fluorescent gel imaging demonstrated the utility of IDEAL labeling in investigating protein metabolism by identifying an as-yet-unrecognized C-terminal fragment (C3) of PrPsen and by characterizing the kinetics of PrPres and APP metabolism. C3 generation and N-terminal truncation of PrPres were inhibited by the anti-prion compound E64, a cysteine protease inhibitor. Surprisingly, E64 did not inhibit the synthesis of new PrPres, providing insight into the mechanism by which E64 reduces steady-state PrPres levels in prion-infected cells. To expand the versatility of tetracysteine tagging, we created new Alexa Fluor- and biotin-conjugated tetracysteine-binding molecules that were applied to imaging PrP endocytosis and ultrastructural localization. IDEAL-labeling extends the use of biarsenical derivatives to extracellular proteins and beyond microscopic imaging.  相似文献   
24.
25.
We cloned, expressed, and purified the Escherichia coli YggH protein and show that it catalyzes the S-adenosyl-L-methionine-dependent formation of N(7)-methylguanosine at position 46 (m(7)G46) in tRNA. Additionally, we generated an E. coli strain with a disrupted yggH gene and show that the mutant strain lacks tRNA (m(7)G46) methyltransferase activity.  相似文献   
26.
A total of 234 M. tuberculosis isolates were used to demonstrate the leading role of mutations in, respectively, codon 531 of gene rpoB (90.0%) and codon 315 of gene katG (92.9%), in the development of resistance to rifampicin and isoniazid by the methods of reverse hybridization with oligonucleotide probes and the sequencing of gene stretches. The levels of primary resistance of M. tuberculosis to rifampicin, isoniazid and multiresistance, according to the molecular-genetic analysis, were 41.0%, 57.7% and 37.2% respectively. The coincidence of the results of the bacteriological and molecular-genetic analyses of the antimicrobial resistance of the isolates was 90.4% and 95.3% for isoniazid and rifampicin respectively. The prevalence of individual types of mutations, linked with antimicrobial resistance, in the presence of a considerable spread of strains of the family Beijing in the region may be indicative of the limited number of M. tuberculosis clones circulating in the region.  相似文献   
27.
Using two-dimensional electrophoresis, we have recently identified in human bronchoalveolar lavage fluid a novel protein, termed B166, with a molecular mass of 17 kDa. Here, we report the cloning of human and rat cDNAs encoding B166, which has been renamed AOEB166 for antioxidant enzyme B166. Indeed, the deduced amino acid sequence reveals that AOEB166 represents a new mammalian subfamily of AhpC/TSA peroxiredoxin antioxidant enzymes. Human AOEB166 shares 63% similarity with Escherichia coli AhpC22 alkyl hydroperoxide reductase and 66% similarity with a recently identified Saccharomyces cerevisiae alkyl hydroperoxide reductase/thioredoxin peroxidase. Moreover, recombinant AOEB166 expressed in E. coli exhibits a peroxidase activity, and an antioxidant activity comparable with that of catalase was demonstrated with the glutamine synthetase protection assay against dithiothreitol/Fe3+/O(2) oxidation. The analysis of AOEB166 mRNA distribution in 30 different human tissues and in 10 cell lines shows that the gene is widely expressed in the body. Of interest, the analysis of N- and C-terminal domains of both human and rat AOEB166 reveals amino acid sequences presenting features of mitochondrial and peroxisomal targeting sequences. Furthermore, human AOEB166 expressed as a fusion protein with GFP in HepG2 cell line is sorted to these organelles. Finally, acute inflammation induced in rat lung by lipopolysaccharide is associated with an increase of AOEB166 mRNA levels in lung, suggesting a protective role for AOEB166 in oxidative and inflammatory processes.  相似文献   
28.
Five subgroups of sulfate-reducing bacteria (SRB) were detected by PCR in three macrophyte rhizospheres (Polygonum densiflorum, Hymenachne donacifolia, and Ludwigia helminthorriza) and three subgroups in Eichhornia crassipes from La Granja, a floodplain lake from the upper Madeira basin. The SRB community varied according to the macrophyte species but with different degrees of association with their roots. The rhizosphere of the C4 plant Polygonum densiflorum had higher frequencies of SRB subgroups as well as higher mercury methylation potentials (27.5 to 36.1%) and carbon (16.06 ± 5.40%), nitrogen (2.03 ± 0.64%), Hg (94.50 ± 6.86 ng Hg g−1), and methylmercury (8.25 ± 1.45 ng Hg g−1) contents than the rhizosphere of the C3 plant Eichhornia crassipes. Mercury methylation in Polygonum densiflorum and Eichhornia crassipes was reduced when SRB metabolism was inhibited by sodium molybdate.  相似文献   
29.
The Precautionary Principle aims to anticipate and minimize potentially serious or irreversible risks under conditions of uncertainty. Thus it preserves the potential for future developments. It has been incorporated into many international treaties and pieces of national legislation for environmental protection and sustainable development. However the Precautionary Principle has not yet been applied systematically to novel Information and Communication Technologies (ICTs) and their potential environmental, social, and health effects. In this article we argue that precaution is necessary in this field and show how the general principle of precaution can be put in concrete terms in the context of the information society. We advocate precautionary measures directed towards pervasive applications of ICT (Pervasive Computing) because of their inestimable potential impacts on society.  相似文献   
30.
Disrupting the interaction between the PDZ protein, PSD-95, and its target ligands (such as the glutamate NMDA receptor or the serotonin 5-HT2A receptor) was found to reduce hyperalgesia in various models of neuropathic pain. Here, we set out to identify lead molecules which would interact with PSD-95, and hence, would potentially display analgesic activity. We describe the virtual screening of the Asinex and Cambridge databases which together contain almost one million molecules. Using three successive docking filters and visual inspection, we identified three structural classes of molecules and synthesized a potential lead compound from each class. The binding of the molecules with the PDZ domains of PSD-95 was assessed by 1H–15N HSQC NMR experiments. The analgesic activity of the best ligand, quinoline 2, was evaluated in vivo in a model of neuropathic pain and showed promising results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号