首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   7篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   5篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1977年   3篇
  1967年   1篇
排序方式: 共有58条查询结果,搜索用时 19 毫秒
31.

Background  

Glutathione, the main antioxidant of intestinal epithelial cells, is suggested to play an important role in gut barrier function and prevention of inflammation-related oxidative damage as induced by acute bacterial infection. Most studies on intestinal glutathione focus on oxidative stress reduction without considering functional disease outcome. Our aim was to determine whether depletion or maintenance of intestinal glutathione changes susceptibility of rats to Salmonella infection and associated inflammation.  相似文献   
32.
To study whether absolute (m/s) or relative (body lengths/s) speed should be used to compare the vulnerability of differently sized animals, we developed a simple computer simulation. Human 'predators' were asked to 'catch' (mouse-click) prey of different sizes, moving at different speeds across a computer screen. Using the simulation, a prey's chances of escaping predation depended on its speed (faster prey were more difficult to catch than slower prey of the same body size), but also on its size (larger prey were easier to catch than smaller prey at the same speed). Catching time, the time needed to catch a prey, also depended on both prey speed and prey size. Relative prey speed (body lengths/s or body surface/s) was a better predictor of catching time than was absolute prey speed (m/s). Our experiment demonstrates that, in contrast to earlier assertions, per unit body length speed of prey may be more 'ecologically relevant' than absolute speed. Copyright 1998 The Association for the Study of Animal Behaviour.  相似文献   
33.
Principal component models for sparse functional data   总被引:5,自引:0,他引:5  
James  GM; Hastie  TJ; Sugar  CA 《Biometrika》2000,87(3):587-602
  相似文献   
34.
35.
36.
37.
Following respiratory syncytial virus infection of adult CB6F1 hybrid mice, a predictable CD8+ T cell epitope hierarchy is established with a strongly dominant response to a Kd-restricted peptide (SYIGSINNI) from the M2 protein. The response to KdM282-90 is ∼5-fold higher than the response to a subdominant epitope from the M protein (NAITNAKII, DbM187-195). After infection of neonatal mice, a distinctly different epitope hierarchy emerges with codominant responses to KdM282-90 and DbM187-195. Adoptive transfer of naïve CD8+ T cells from adults into congenic neonates prior to infection indicates that intrinsic CD8+ T cell factors contribute to age-related differences in hierarchy. Epitope-specific precursor frequency differs between adults and neonates and influences, but does not predict the hierarchy following infection. Additionally, dominance of KdM282-90 –specific cells does not correlate with TdT activity. Epitope-specific Vβ repertoire usage is more restricted and functional avidity is lower in neonatal mice. The neonatal pattern of codominance changes after infection at 10 days of age, and rapidly shifts to the adult pattern of extreme KdM282- 90 -dominance. Thus, the functional properties of T cells are selectively modified by developmental factors in an epitope-specific and age-dependent manner.  相似文献   
38.
CD4 T cells have been shown to play an important role in the immunity and immunopathogenesis of respiratory syncytial virus (RSV) infection. We identified two novel CD4 T-cell epitopes in the RSV M and M2 proteins with core sequences M213-223 (FKYIKPQSQFI) and M227-37 (YFEWPPHALLV). Peptides containing the epitopes stimulated RSV-specific CD4 T cells to produce gamma interferon (IFN-γ), interleukin 2 (IL-2), and other Th1- and Th2-type cytokines in an I-Ab-restricted pattern. Construction of fluorochrome-conjugated peptide-I-Ab class II tetramers revealed RSV M- and M2-specific CD4 T-cell responses in RSV-infected mice in a hierarchical pattern. Peptide-activated CD4 T cells from lungs were more activated and differentiated, and had greater IFN-γ expression, than CD4 T cells from the spleen, which, in contrast, produced greater levels of IL-2. In addition, M209-223 peptide-activated CD4 T cells reduced IFN-γ and IL-2 production in M- and M2-specific CD8 T-cell responses to Db-M187-195 and Kd-M282-90 peptides more than M225-39 peptide-stimulated CD4 T cells. This correlated with the fact that I-Ab-M209-223 tetramer-positive cells responding to primary RSV infection had a much higher frequency of FoxP3 expression than I-Ab-M226-39 tetramer-positive CD4 T cells, suggesting that the M-specific CD4 T-cell response has greater regulatory function. Characterization of epitope-specific CD4 T cells by novel fluorochrome-conjugated peptide-I-Ab tetramers allows detailed analysis of their roles in RSV pathogenesis and immunity.CD4 T lymphocytes play an important role in the resolution of primary viral infections and the prevention of reinfection by regulating a variety of humoral and cellular immune responses. CD4 T cells provide cytokines and other molecules to support the differentiation and expansion of antigen-specific CD8 T cells, which are major effectors for both virus clearance and immunopathology during primary infection with respiratory syncytial virus (RSV) (3, 17, 42, 43). CD4 T-cell help is mandatory for an effective B-cell response (14), which is necessary for producing neutralizing antibodies that prevent secondary RSV infection (12, 18, 21). A concurrent CD4 T-cell response also promotes the maintenance of CD8 T-cell surveillance and effector capacity (9). Previous studies have shown that interleukin 2 (IL-2) from CD4 T cells can restore CD8 T-cell function in lungs (10) and that IL-2 supplementation can increase the production of gamma interferon (IFN-γ) by CD8 T cells upon peptide stimulation in vitro (45).While CD4 T cells are important for providing support to host immunity, they have also been associated with immunopathogenesis by playing a key role in the Th2-biased T-cell response (34, 46), which may be the common mechanism of enhanced lung pathology and other disease syndromes shown in murine studies (2, 16, 17, 19, 35). Earlier studies showed the positive association of formalin-inactivated RSV (FI-RSV) immunization-mediated enhanced illness upon subsequent natural RSV infection with a Th2-biased CD4 T-cell response (19, 44). Th2-orientated CD4 T cells elicit severe pneumonia with extensive eosinophilic infiltrates in the lungs of FI-RSV-immunized mice (13, 24, 48). Patients with severe RSV disease showed an elevated Th2/Th1 cytokine ratio in nasal secretions and peripheral blood mononuclear cells (27, 29, 31, 38). Increased disease severity has also been associated with polymorphisms in Th2-related cytokine genes, such as the IL-4, IL-4 receptor, and IL-13 genes (11, 23, 36). Th2 cytokines from CD4 T cells can also diminish the CD8 T-cell response and delay viral clearance (4, 8).The evaluation of CD4 T-cell responses in viral infection is particularly relevant in the RSV model because of the association of RSV and allergic inflammation, which is largely mediated by CD4 T cells. Understanding the influence of CD4 T cells on CD8 T-cell responses and other immunological effector mechanisms is central to understanding RSV pathogenesis and developing preventive vaccine strategies for RSV. Our lab and others have demonstrated that CD8 T cells target RSV M and M2 proteins with cytolytic effector activities (28, 30, 39). In this study, we found that both RSV M and M2 proteins also contain CD4 T-cell epitopes. These epitopes have 11-mer amino acid core sequences and are associated with the major histocompatibility complex (MHC) class II molecule I-Ab. Fluorochrome-conjugated peptide-I-Ab molecule tetrameric complexes can identify RSV M- and M2-specific CD4 T cells from CB6F1 mice following RSV infection in a hierarchical pattern. Peptides containing the epitopes can stimulate CD4 T cells from RSV M or M2 DNA-immunized and virus-challenged mice and can lead to the production of IFN-γ, IL-2, and other Th1- and Th2-type cytokines that can modulate the CD8 T-cell response to RSV M and M2. We also found that CD4 T cells from the lungs and spleens of immunized mice have different phenotype and cytokine profiles upon in vitro stimulation. These observations suggest a regulatory role for CD4 T cells in the host response to RSV infection. The development of novel MHC class II tetramer reagents allows the characterization of epitope-specific CD4 T-cell responses to RSV and will enable the investigation of basic mechanisms by which CD4 T cells affect pathogenesis and immunity to viral infections.  相似文献   
39.
The human immunodeficiency virus Tat protein is essential for virus replication and is a candidate vaccine antigen. Macaques immunized with Tat or chemically modified Tat toxoid having the same clade B sequence developed strong antibody responses. We compared these antisera for their abilities to recognize diverse Tat sequences. An overlapping peptide array covering three clade B and two clade C Tat sequences was constructed to help identify reactive linear epitopes. Sera from Tat-immunized macaques were broadly cross-reactive with clade B and clade C sequences but recognized a clade B-specific epitope in the basic domain. Sera from Tat toxoid-immunized macaques had a more restricted pattern of recognition, reacting mainly with clade B and with only one clade B basic domain sequence, which included the rare amino acids RPPQ at positions 57 to 60. Monoclonal antibodies against the amino terminus or the domain RPPQ sequence blocked Tat uptake into T cells and neutralized Tat in a cell-based transactivation assay. Macaques immunized with Tat or Tat toxoid proteins varied in their responses to minor epitopes, but all developed a strong response to the amino terminus, and antisera were capable of neutralizing Tat in a transactivation assay.  相似文献   
40.
This paper describes the effect of external chloride on the typical swelling response induced in duck red cells by hypertonicity or norepinephrine. Lowering chloride inhibits swelling and produces concomitant changes in net movements of sodium and potassium in ouabain-treated cells, which resemble the effect of lowering external sodium or potassium. Inhibition is the same whether chloride is replaced with gluconate or with an osmotic equivalent of sucrose. Since changes in external chloride also cause predictable changes in cell chloride, pH, and water, these variables were systematically investigated by varying external pH along with chloride. Lowering pH to 6.60 does not abolish the response if external chloride levels are normal, although the cells are initially swollen due to the increased acidity. Cells deliberately preswollen in hypotonic solutions with appropriate ionic composition can also respond to norepinephrine by further swelling. These results rule out initial values of cell water, chloride, and pH as significant variables affecting the response. Initial values of the chloride equilibrium potential do have marked effect on the direction and rate of net water movement. If chloride is lowered by replacement with the permeant anion, acetate, E(Cl) is unchanged and a normal response to norepinephrine, which is inhibited by furosemide, is observed. Increasing internal sodium by the nystatin technique also inhibits the response. A theory is developed which depicts that the cotransport carrier proposed in the previous paper (W.F. Schmidt and T.J. McManus. 1977b. J. Gen. Physiol. 70:81-97) moves in response to the net electrochemical potential difference driving sodium and potassium across the membrane. Predictions of this theory fit the data for both cations and anions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号