排序方式: 共有34条查询结果,搜索用时 15 毫秒
11.
We sequenced most of the mitochondrial (mt) genomes of 2 apocritan taxa: Vanhornia eucnemidarum and Primeuchroeus spp. These mt genomes have similar nucleotide composition and codon usage to those of mt genomes reported for other Hymenoptera, with a total A + T content of 80.1% and 78.2%, respectively. Gene content corresponds to that of other metazoan mt genomes, but gene organization is not conserved. There are a total of 6 tRNA genes rearranged in V. eucnemidarum and 9 in Primeuchroeus spp. Additionally, several noncoding regions were found in the mt genome of V. eucnemidarum, as well as evidence of a sustained gene duplication involving 3 tRNA genes. We also report an inversion of the large and small ribosomal RNA genes in Primeuchroeus spp. mt genome. However, none of the rearrangements reported are phylogenetically informative with respect to the current taxon sample. 相似文献
12.
R. LÜHKEN C. CZAJKA S. STEINKE H. JÖST J. SCHMIDT‐CHANASIT W. PFITZNER N. BECKER E. KIEL A. KRÜGER E. TANNICH 《Medical and veterinary entomology》2016,30(2):144-154
Owing to their role as vectors of malaria parasites, species of the Anopheles maculipennis complex (Diptera: Culicidae) Meigen were intensively studied in the past, but with the disappearance of malaria in Germany in the middle of the last century, the interest in this field of research declined. A comprehensive ecological analysis of the current species distribution for Germany is lacking. Between 2010 and 2013, a total of 1445 mosquitoes of the An. maculipennis complex were collected at 72 different sites in Germany. The samples comprise 722 single individuals as well as 723 individuals in 90 pools of up to 25 mosquitoes. All samples were analysed with newly developed species‐specific qPCR assays for the identification of the four German species using nucleotide differences within the internal transcribed spacer 2 (ITS2) ribosomal DNA. All gathered data were used for species distribution modelling. The overall prevalence of An. messeae s.l. was highest with 98.89% of all pools; An. daciae with 6.93% of all individuals and An. messeae s.s. with 69.53%. The prevalence of the other two species was relatively low: An. maculipennis s.s. with 13.30% of all individuals (6.67% of all pools) and An. atroparvus with 1.80% of all individuals (1.11% of all pools). 相似文献
13.
14.
The cyanobacteria Phormidium valderianum, P. tenue and Microcoleus chthonoplastes and the green algae Rhizoclonium fontinale, Ulva intestinalis, Chara zeylanica and Pithophora oedogoniana were exposed to hydrogen tetrachloroaurate solution and were screened for their suitability for producing nano‐gold. All three cyanobacteria genera and two of the green algae (Rhizoclonium fontinale and Ulva intestinalis) produced gold nanoparticles intracellularly, confirmed by purple colouration of the thallus within 72?h of treatment at 20°C. Extracted nanoparticle solutions were examined by UV‐vis spectroscopy, transmission electron microscopy (TEM) and X‐ray diffractometry (XRD). XRD confirmed the reduction of Au (III) to Au (0). UV‐vis spectroscopy and TEM studies indicated the production of nanoparticles having different shapes and sizes. Phormidium valderianum synthesized mostly spherical nanoparticles, along with hexagonal and triangular nanoparticles, at basic and neutral pHs (pH 9 and pH 7, respectively). Medicinally important gold nanorods were synthesized (together with gold nanospheres) only by P. valderianum at acidic pH (pH 5); this was initially determined by two surface plasmon bands in UV‐vis spectroscopy and later confirmed by TEM. Spherical to somewhat irregular particles were produced by P. tenue and Ulva intestinalis (TEM studies). The UV‐vis spectroscopy of the supernatant of other algal extracts indicated the formation of mostly spherical particles. Production of gold nanoparticles by algae is more ecofriendly than purely chemical synthesis. However, the choice of algae is important: Chara zeylanica and Pithophora oedogoniana were found to be unable to produce nanoparticles. 相似文献
15.
The dependence of proximal tubular sodium and fluid readsorption on the Na(+) concentration of the luminal and peritubular fluid was studied in the perfused necturus kidney. Fluid droplets, separated by oil from the tubular contents and identical in composition to the vascular perfusate, were introduced into proximal tubules, reaspirated, and analyzed for Na(+) and [(14)C]mannitol. In addition, fluid transport was measured in short-circuited fluid samples by observing the rate of change in length of the split droplets in the tubular lumen. Both reabsorptive fluid and calculated Na fluxes were simple, storable functions of the perfusate Na(+) concentration (K(m) = 35-39 mM/liter, V(max) = 1.37 control value). Intracellular Na(+), determined by tissue analysis, and open-circuit transepithelial electrical potential differences were also saturable functions of extracellular Na(+). In contrast, net reabsorptive fluid and Na(+) fluxes were linearly dependent on intracellular Na(+) and showed no saturation, even at sharply elevated cellular sodium concentrations. These concentrations were achieved by addition of amphotericin B to the luminal perfusate, a maneuver which increased the rate of Na(+) entry into the tubule cells and caused a proportionate rise in net Na(+) flux. It is concluded that active peritubular sodium transport in proximal tubule cells of necturus is normally unsaturated and remains so even after amphotericin-induced enhancement of luminal Na(+) entry. Transepithelial movement of NaCl may be described by a model with a saturable luminal entry step of Na(+) or NaCl into the cell and a second, unsaturated active transport step of Na(+) across the peritubular cell boundary. 相似文献
16.
17.
The cuticular membrane (CM) ofNicotiana tabacumL., includingthe cellin wall (CW), was examined to gain more informationabout the nature and chemical constitution of its fine structurefor possible inclusion in a model system, as recent literaturequestions its function as a major water permeability barrier.Different preparation techniques were used and the results evaluatedto select a method for future studies on tobacco leaf cuticles.Fixation with OsO4included in the primary fixative, either asa vapour or in combination with other agents, followed by OsO4aspost-fixative, gave good contrast of the CM. The lamellar structureof the tobacco cuticle proper (CP) was revealed by contrastingwith uranyl acetate and lead citrate. The fine lamellar structureof the CP was very clearly contrasted when KMnO4was includedin the primary fixative. This was interpreted as indicatingthe tobacco CP to be polar. The reticulate fibrillar patternof the tobacco cuticular layer (CL) containing polysaccharideswas well contrasted when either OsO4or paraformaldehyde wereincluded in the primary fixative. Cold fixation with glutaraldehydeand dimethyl sulphoxide and post-fixation with OsO4revealedelectron-opaque material in the outer cutinized, irregularlyoutlined, region of the CW. These ultrahistochemical reactionsare discussed in relation to the known chemical compositionand possible water permeability of the CM. Cuticular fine structure; cuticular transpiration; Nicotiana tabacumL. 相似文献
18.
Gaus K Rodriguez M Ruberu KR Gelissen I Sloane TM Kritharides L Jessup W 《Journal of lipid research》2005,46(7):1526-1538
Lipid rafts, defined as cholesterol- and sphingolipid-rich domains, provide specialized lipid environments understood to regulate the organization and function of many plasma membrane proteins. Growing evidence of their existence, protein cargo, and regulation is based largely on the study of isolated lipid rafts; however, the consistency and validity of common isolation methods is controversial. Here, we provide a detailed and direct comparison of the lipid and protein composition of plasma membrane "rafts" prepared from human macrophages by different methods, including several detergent-based isolations and a detergent-free method. We find that detergent-based and detergent-free methods can generate raft fractions with similar lipid contents and a biophysical structure close to that previously found on living cells, even in cells not expressing caveolin-1, such as primary human macrophages. However, important differences between isolation methods are demonstrated. Triton X-100-resistant rafts are less sensitive to cholesterol or sphingomyelin depletion than those prepared by detergent-free methods. Moreover, we show that detergent-based methods can scramble membrane lipids during the isolation process, reorganizing lipids previously in sonication-derived nonraft domains to generate new detergent-resistant rafts. The role of rafts in regulating the biological activities of macrophage plasma membrane proteins may require careful reevaluation using multiple isolation procedures, analyses of lipids, and microscopic techniques. 相似文献
19.
Seegmiller A; Williams KR; Hammersmith RL; Doak TG; Witherspoon D; Messick T; Storjohann LL; Herrick G 《Molecular biology and evolution》1996,13(10):1351-1362
Internal eliminated sequences (IESs) often interrupt ciliate genes in the
silent germline nucleus but are exactly excised and eliminated from the
developing somatic nucleus from which genes are then expressed. Some long
IESs are transposons, supporting the hypothesis that short IESs are ancient
transposon relics. In light of that hypothesis and to explore the
evolutionary history of a collection of IESs, we have compared various
alleles of a particular locus (the 81 locus) of the ciliated protozoa
Oxytricha trifallax and O. fallax. Three short IESs that interrupt two
genes of the locus are found in alleles from both species, and thus must be
relatively ancient, consistent with the hypothesis that short IESs are
transposon relics. In contrast, TBE1 transposon interruptions of the locus
are allele-specific and probably the results of recent transpositions.
These IESs (and the TBE1s) are precisely excised from the DNA of the
developing somatic macronucleus. Each IES interrupts a highly conserved
sequence. A few nucleotides at the ends of each IES are also conserved,
suggesting that they interact critically with IES excision machinery.
However, most IES nucleotide positions have evolved at high rates, showing
little or no selective constraint for function. Nonetheless, the length of
each IES has been maintained (+/- 3 bp). While one IES is approximately 33
bp long, three other IESs have very similar sizes, approximately 70 bp
long. Two IESs are surrounded by direct repeats of the sequence TTCTT. No
other sequence similarities were found between any of the four IESs.
However, the ends of one IES do match the inverted terminal repeat
consensus sequence of the "TA" IESs of Paramecium. Three O. trifallax
alleles appear to have been recipients in recent conversion events that
could have been provoked by double-strand breaks associated with IES ends
subsequent to IES transposition. Our findings support the hypothesis that
short IESs evolved from ancient transposons that have lost most of their
sequences, except those necessary for precise excision during macronuclear
development.
相似文献
20.
EDC3 phosphorylation regulates growth and invasion through controlling P‐body formation and dynamics
Jeremiah J Bearss Sathish KR Padi Neha Singh Marina CardoVila Jin H Song Ghassan Mouneimne Nikita Fernandes Yang Li Matthew R Harter Jaime MC Gard Anne E Cress Wolfgang Peti Andrew DL Nelson J Ross Buchan Andrew S Kraft Koichi Okumura 《EMBO reports》2021,22(4)
Regulation of mRNA stability and translation plays a critical role in determining protein abundance within cells. Processing bodies (P‐bodies) are critical regulators of these processes. Here, we report that the Pim1 and 3 protein kinases bind to the P‐body protein enhancer of mRNA decapping 3 (EDC3) and phosphorylate EDC3 on serine (S)161, thereby modifying P‐body assembly. EDC3 phosphorylation is highly elevated in many tumor types, is reduced upon treatment of cells with kinase inhibitors, and blocks the localization of EDC3 to P‐bodies. Prostate cancer cells harboring an EDC3 S161A mutation show markedly decreased growth, migration, and invasion in tissue culture and in xenograft models. Consistent with these phenotypic changes, the expression of integrin β1 and α6 mRNA and protein is reduced in these mutated cells. These results demonstrate that EDC3 phosphorylation regulates multiple cancer‐relevant functions and suggest that modulation of P‐body activity may represent a new paradigm for cancer treatment. 相似文献