首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1339篇
  免费   130篇
  国内免费   2篇
  2022年   15篇
  2021年   49篇
  2020年   17篇
  2019年   29篇
  2018年   23篇
  2017年   36篇
  2016年   38篇
  2015年   65篇
  2014年   57篇
  2013年   89篇
  2012年   94篇
  2011年   107篇
  2010年   70篇
  2009年   50篇
  2008年   81篇
  2007年   66篇
  2006年   63篇
  2005年   57篇
  2004年   39篇
  2003年   48篇
  2002年   32篇
  2001年   17篇
  2000年   15篇
  1999年   21篇
  1998年   14篇
  1997年   9篇
  1996年   12篇
  1995年   9篇
  1993年   13篇
  1992年   11篇
  1991年   12篇
  1990年   10篇
  1989年   15篇
  1988年   10篇
  1987年   10篇
  1986年   15篇
  1985年   8篇
  1984年   8篇
  1983年   10篇
  1982年   15篇
  1981年   9篇
  1980年   8篇
  1979年   9篇
  1978年   9篇
  1977年   11篇
  1976年   9篇
  1974年   7篇
  1973年   6篇
  1968年   6篇
  1967年   6篇
排序方式: 共有1471条查询结果,搜索用时 171 毫秒
71.
Aqueous two‐phase extraction (ATPE) has been showing significant potential in the biopharmaceutical industry, allowing the selective separation of high‐value proteins directly from unclarified cell culture supernatants. In this context, effective high‐throughput screening tools are critical to perform a rapid empirical optimization of operating conditions. In particular, microfluidic ATPE screening devices, coupled with fluorescence microscopy to continuously monitor the partition of fluorophore‐labeled proteins, have been recently demonstrated to provide short diffusion distances and rapid partition, using minimal reagent volumes. Nevertheless, the currently overlooked influence of the labeling procedure on partition must be carefully evaluated to validate the extrapolation of results to the unlabeled molecule. Here, three fluorophores with different global charge and reactivity selected to label immunoglobulin G (IgG) at degrees of labeling (DoL) ranging from 0.5 to 7.6. Labeling with BODIPY FL maleimide (DoL = 0.5), combined with tris(2‐carboxyethyl) phosphine (TCEP) to generate free thiol groups, is the most promising strategy to minimize the influence of the fluorophore on partition. In particular, the partition coefficient (Kp) measured in polyethylene glycol (PEG) 3350–phosphate systems with and without the addition of NaCl using microtubes (batch) or microfluidic devices (continuous) is comparable to those quantified for the native protein.  相似文献   
72.
73.
Neurotrophins, such as brain derived neurotrophic factor (BDNF), do not cross the blood-brain barrier (BBB). Certain monoclonal antibodies (MAb) to the human insulin receptor (HIR) do cross the BBB via receptor-mediated transport, and can act as a molecular Trojan horse to ferry across the BBB an attached drug. A genetically engineered fusion protein was produced whereby the amino terminus of human BDNF is fused to the carboxyl terminus of the heavy chain of a chimeric HIRMAb. The HIRMAb-BDNF fusion protein reacted equally with antibodies to human IgG and BDNF. The bi-functionality of the fusion protein was retained as the affinity of the fusion protein for the HIR was identical to that of the chimeric HIRMAb, and the affinity of the fusion protein for the trkB receptor was identical to that of BDNF. The fusion protein was equi-potent with BDNF in a neuroprotection assay in human neural cells. The pharmacokinetics (PK) of the fusion protein was examined in the adult Rhesus monkey. The mean residence time (MRT) of the fusion protein in blood was >100-fold longer than the MRT of BDNF. Therapeutic levels of BDNF were produced in primate brain following the intravenous administration of the fusion protein. A fusion protein tandem vector was engineered that allowed for isolation of a CHO cell line that produced the fusion protein at high levels in serum free medium. Neurotrophins, such as BDNF, can be re-formulated to enable these molecules to cross the human BBB, and such fusion proteins represent a new class of human neurotherapeutics.  相似文献   
74.
The FDA has published guidelines by which to carry out and interpret in vitro induction studies using hepatocytes but do researchers in pharmaceutical companies actually follow these to the letter? In a survey of 30 participants in the pharmaceutical industry, 19 questions were posed regarding the species investigated, methodologies and interpretations of the data. Also addressed was the in-house decision making processes as a result of in vitro induction data. The survey showed that, although the basic methods were similar, no two researchers carried out and interpreted induction assays in exactly the same way. No single method was superior but all included enzyme activities as the major end point. Hepatocytes from animal species were used to confirm animal in vivo data but only human hepatocytes were used to predict human induction responses. If a compound was found to be positive in an in vitro induction assay, few would halt the development of the compound. The majority would consider other properties of the compound (bioavailability, clearance and therapeutic concentrations) and follow the FDA recommendation to conduct clinical drug-drug interaction studies. Overall, the results from this survey indicate that there is no standard pharmaceutical industry method or evaluation criterion by which in vitro assays are carried out. Rather than adhering to the FDA guidelines, some adapt methods and interpretation according to their own experience and need (whether screening or lead optimisation). There was general consensus that studies using human hepatocyte cultures currently provide the best indication of the in vivo induction potential of NCEs. In addition, the assessment of in vitro induction data from the literature suggest that the two-fold induction threshold and the percent of positive control criteria may not be the best methods to accurately assess the in vivo induction potential of a drug. Although the two-fold induction criterion is now obsolete, more predictive models for determining the clinical induction potential are needed. Alternative models are proposed and discussed herein.  相似文献   
75.
Microgel cell electrophoresis has been used with various species to measure breakage of DNA and DNA repair following exposure to the radiomimetic antibiotic, bleomycin. With humans, a high degree of DNA damage is considered to be predictive of cancer susceptibility. Non-isogeneic Xenopus laevis, the South African clawed toad, rarely develop spontaneous or induced cancers. Here, we investigate bleomycin-induced DNA damage and repair in splenic lymphocytes of this species to test consistency with cancer predictability. As X. laevis is pseudotetraploid in nature, while Xenopus tropicalis is diploid, we additionally explore the effect of polyploidy on DNA damage and repair in these vertebrates. The results show that higher doses of bleomycin are required to induce comparable levels of DNA damage in both Xenopus species, than in humans. X. tropicalis, the diploid, is more bleomycin-sensitive than is X. laevis. Additionally, repair rates of damaged DNA of X. laevis lymphocytes are more rapid than those of X. tropicalis, although both are hours slower than human leukocytes. While no data exist on cancer susceptibility in X. tropicalis, the results suggest greater susceptibility to cancer than X. laevis, but less than in humans. Thus, polyploidy serves as a protection against DNA damage and allows more rapid repair.  相似文献   
76.
77.
Regional climate change in Antarctica would favor the carbon assimilation of Antarctic vascular plants, since rising temperatures are approaching their photosynthetic optimum (10–19°C). This could be detrimental for photoprotection mechanisms, mainly those associated with thermal dissipation, making plants more susceptible to eventual drought predicted by climate change models. With the purpose to study the effect of temperature and water availability on light energy utilization and putative adjustments in photoprotective mechanisms of Deschampsia antarctica Desv., plants were collected from two Antarctic provenances: King George Island and Lagotellerie Island. Plants were cultivated at 5, 10 and 16°C under well‐watered (WW) and water‐deficit (WD, at 35% of the field capacity) conditions. Chlorophyll fluorescence, pigment content and de‐epoxidation state were evaluated. Regardless of provenances, D. antarctica showed similar morphological, biochemical and functional responses to growth temperature. Higher temperature triggered an increase in photochemical activity (i.e. electron transport rate and photochemical quenching), and a decrease in thermal dissipation capacity (i.e. lower xanthophyll pool, Chl a/b and β carotene/neoxanthin ratios). Leaf mass per unit area was reduced at higher temperature, and was only affected in plants exposed to WD at 16°C and exhibiting lower electron transport rate and amount of chlorophylls. D. antarctica is adapted to frequent freezing events, which may induce a form of physiological water stress. Photoprotective responses observed under WD contribute to maintain a stable photochemical activity. Thus, it is possible that short‐term temperature increases could favor the photochemical activity of this species. However, long‐term effects will depend on the magnitude of changes and the plant's ability to adjust to new growth temperature.  相似文献   
78.
Rhizobia in the plant microbiota The plant microbiota is of critical importance for plant growth and survival in soil. To explore mechanisms underlying plant‐microbiota interactions, defined commensal communities can be composed from microbiota culture collections and co‐cultivated with germ‐free plants to determine their impact on plant growth and health. The order Rhizobiales belongs to the core microbiota and includes nitrogen‐fixing bacteria that are known to engage in symbiotic interactions with legumes. Compatible host‐symbiont pairs are needed for a functional symbiosis, which involves the activation of highly specialized and interdependent signaling pathways between the two partners. Comparative genome analysis of more than 1,300 legume symbionts and rhizobial root commensals from non‐leguminous plants revealed that the most recent common ancestor of rhizobia lacked the gene repertoire needed for symbiosis and was able to colonize roots of a wide variety of plants. During evolution, key symbiosis genes were acquired multiple independent times by commensals belonging to different families of the Rhizobiales order.  相似文献   
79.

Cadmium (Cd) is a toxic metal and classified as a carcinogen whose exposure could affect the function of the central nervous system. There are studies that suggest that Cd promotes neurodegeneration in different regions of the brain, particularly in the hippocampus. It is proposed that its mechanism of toxicity maybe by an oxidative stress pathway, which modifies neuronal morphology and causes the death of neurons and consequently affecting cognitive tasks. However, this mechanism is not yet clear. The aim of the present work was to study the effect of Cd administration on recognition memory for 2, 3 and 4 months, neuronal morphology and immunoreactivity for caspase-3 and 9 in rat hippocampi. The results show that the administration of Cd decreased recognition memory. Likewise, it caused the dendritic morphology of the CA1, CA3 and dentate gyrus regions of the hippocampus to decrease with respect to the time of administration of this heavy metal. In addition, we observed a reduction in the density of dendritic spines as well as an increase in the immunoreactivity of caspase-3 and 9 in the same hippocampal regions of the animals treated with Cd. These results suggest that Cd affects the structure and function of the neurons of the hippocampus, which contribute to the deterioration of recognition memory. Our results suggest that the exposure to Cd represents a critical health problem, which if not addressed quickly, could cause much more serious problems in the quality of life of the human population, as well as in the environment in which they develop.

  相似文献   
80.
Circadian rhythm disturbance (CRD) increases the risk of disease, e.g. metabolic syndrome, cardiovascular disease, and cancer. In the present study, we investigated later life adverse health effects triggered by repeated jet lag during gestation. Pregnant mice were subjected to a regular light-dark cycle (CTRL) or to a repeated delay (DEL) or advance (ADV) jet lag protocol. Both DEL and ADV offspring showed reduced weight gain. ADV offspring had an increased circadian period, and an altered response to a jet lag was observed in both DEL and ADV offspring. Analysis of the bones of adult male ADV offspring revealed reduced cortical bone mass and strength. Strikingly, analysis of the heart identified structural abnormalities and impaired heart function. Finally, DNA methylation analysis revealed hypermethylation of miR17-92 cluster and differential methylation within circadian clock genes, which correlated with altered gene expression. We show that developmental CRD affects the circadian system and predisposes to non-communicable disease in adult life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号