首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1235篇
  免费   118篇
  国内免费   2篇
  1355篇
  2023年   5篇
  2022年   14篇
  2021年   49篇
  2020年   16篇
  2019年   26篇
  2018年   22篇
  2017年   35篇
  2016年   38篇
  2015年   62篇
  2014年   55篇
  2013年   87篇
  2012年   87篇
  2011年   102篇
  2010年   63篇
  2009年   50篇
  2008年   80篇
  2007年   64篇
  2006年   61篇
  2005年   55篇
  2004年   38篇
  2003年   45篇
  2002年   30篇
  2001年   14篇
  2000年   11篇
  1999年   20篇
  1998年   11篇
  1997年   9篇
  1996年   11篇
  1995年   6篇
  1994年   6篇
  1993年   13篇
  1992年   10篇
  1991年   9篇
  1990年   9篇
  1989年   11篇
  1988年   9篇
  1987年   8篇
  1986年   11篇
  1984年   6篇
  1983年   5篇
  1982年   12篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1978年   7篇
  1977年   7篇
  1976年   6篇
  1974年   6篇
  1973年   5篇
  1968年   6篇
排序方式: 共有1355条查询结果,搜索用时 0 毫秒
171.
NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na+ current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na+ current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine.  相似文献   
172.
The study tested the assumption that the effect of land-use changes on hydrological dynamics and edaphic features of an aquatic-terrestrial ecotone have led to vegetational patchiness and decrease primary productivity (NPP). On the basis of the depletion of a groundwater-fed stream, three study sites corresponding to interrupted, intermittent and permanent streams were selected throughout the ecotone in the Sunsunes catchment (Orinoco basin, Venezuela). To describe the human impact on land cover, patchiness, biodiversity, hydrological and edaphic features, NPP and nutrient availability, we use structural and functional approaches. Hydrological (i.e., duration of inundation and maximum inundation height), soil chemical (e.g., Ca concentration, available phosphorous, soil organic matter) and physical (i.e., water-filled pore spaces) features were the best predictors of anthropogenic disturbance. In the ecotone, the tree species invasion from well-drained savannas increased woody cover as described by a stretched exponential model. Groundwater drawdown in the interrupted and intermittent streams increased with 74 and 34 colonizer species from well-drained savannas. The NPP of the ecotonal vegetation along the interrupted stream (909?g C/m2/yr) was a higher sink as compared to the intermittent and permanent streams (580?g C/m2/yr). Anthropogenic stress along with natural disturbance resulted in a decline in the system??s functioning. In contrast to hydrology, the effect of the nutrient addition (i.e., liming and phosphorous) on the carbon accumulation by species was not significant. Therefore, the functional response of the system was more sensitive to hydrology regime. The results indicate impact on the ecotones occurred in short term, and that vulnerability to climate is crucial of groundwater-dependent vegetation.  相似文献   
173.
174.
175.
Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3−/− mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis.  相似文献   
176.
Adaptation of avian influenza viruses for replication and transmission in the human host is believed to require mutations in the hemagglutinin glycoprotein (HA) which enable binding to human α2-6 sialosides and concomitant reduction in affinity for avian α2-3 linked sialosides. Here, we show by glycan microarray analyses that the two mutations responsible for such specificity changes in 1957 H2N2 and 1968 H3N2 pandemic viruses, when inserted into recombinant HAs or intact viruses of some recent avian H5N1 isolates (clade 2.2), impart such attributes. This propensity to adapt to human receptors is primarily dependent on arginine at position 193 within the receptor-binding site, as well as loss of a vicinal glycosylation site. Widespread occurrence of these susceptible H5N1 clade 2.2 influenza strains has already occurred in Europe, the Middle East, and Africa. Thus, these avian strains should be considered high-risk, because of their significantly lower threshold for acquiring human receptor specificity and, therefore, warrant increased surveillance and further study.  相似文献   
177.
178.
Despite the fact that most industrial processes for secondary metabolite production are performed with submerged cultures, a reliable developmental model for Streptomyces under these culture conditions is lacking. With the exception of a few species which sporulate under these conditions, it is assumed that no morphological differentiation processes take place. In this work, we describe new developmental features of Streptomyces coelicolor A3(2) grown in liquid cultures and integrate them into a developmental model analogous to the one previously described for surface cultures. Spores germinate as a compartmentalized mycelium (first mycelium). These young compartmentalized hyphae start to form pellets which grow in a radial pattern. Death processes take place in the center of the pellets, followed by growth arrest. A new multinucleated mycelium with sporadic septa (second mycelium) develops inside the pellets and along the periphery, giving rise to a second growth phase. Undecylprodigiosin and actinorhodin antibiotics are produced by this second mycelium but not by the first one. Cell density dictates how the culture will behave in terms of differentiation processes and antibiotic production. When diluted inocula are used, the growth arrest phase, emergence of a second mycelium, and antibiotic production are delayed. Moreover, pellets are less abundant and have larger diameters than in dense cultures. This work is the first to report on the relationship between differentiation processes and secondary metabolite production in submerged Streptomyces cultures.  相似文献   
179.
180.
Spinal Muscular Atrophy is a recessive genetic disease and affects lower motor neurones and muscle tissue. A single gene is disrupted in SMA: SMN1 activity is abolished but a second copy of the gene (SMN2) provides limited activity. While the SMN protein has been shown to function in the assembly of RNA-protein complexes, it is unclear how the overall reduction in SMN activity specifically results in the neuromuscular phenotypes. Similar to humans, reduced smn activity in the fly causes earliest phenotypes in neuromuscular tissues. To uncover the effects of reduced SMN activity, we have studied gene expression in control and diseased fly tissues using whole genome micro-arrays. A number of gene expression changes are recovered and independently validated. Identified genes show trends in their predicted function: several are consistent with the function of SMN, in addition some uncover novel pathways. This and subsequent genetic analysis in the fly indicates some of the identified genes could be taken for further studies as potential drug targets for SMA and other neuromuscular disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号