首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1272篇
  免费   123篇
  国内免费   2篇
  1397篇
  2023年   5篇
  2022年   14篇
  2021年   49篇
  2020年   17篇
  2019年   26篇
  2018年   23篇
  2017年   36篇
  2016年   40篇
  2015年   66篇
  2014年   61篇
  2013年   91篇
  2012年   88篇
  2011年   108篇
  2010年   64篇
  2009年   51篇
  2008年   81篇
  2007年   67篇
  2006年   63篇
  2005年   56篇
  2004年   39篇
  2003年   46篇
  2002年   32篇
  2001年   14篇
  2000年   11篇
  1999年   20篇
  1998年   11篇
  1997年   9篇
  1996年   11篇
  1995年   6篇
  1994年   6篇
  1993年   13篇
  1992年   11篇
  1991年   9篇
  1990年   9篇
  1989年   11篇
  1988年   9篇
  1987年   8篇
  1986年   11篇
  1984年   6篇
  1983年   5篇
  1982年   12篇
  1981年   8篇
  1980年   4篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   6篇
  1974年   6篇
  1973年   5篇
  1968年   6篇
排序方式: 共有1397条查询结果,搜索用时 0 毫秒
51.
52.
The pig is commonly used as an experimental model of human heart disease, including for the study of mechanisms of arrhythmia. However, there exist differences between human and porcine cellular electrophysiology: The pig action potential (AP) has a deeper phase-1 notch, a longer duration at 50% repolarization, and higher plateau potentials than human. Ionic differences underlying the AP include larger rapid delayed-rectifier and smaller inward-rectifier K+-currents (IKr and IK1 respectively) in humans. AP steady-state rate-dependence and restitution is steeper in pigs. Porcine Ca2+ transients can have two components, unlike human. Although a reliable computational model for human ventricular myocytes exists, one for pigs is lacking. This hampers translation from results obtained in pigs to human myocardium. Here, we developed a computational model of the pig ventricular cardiomyocyte AP using experimental datasets of the relevant ionic currents, Ca2+-handling, AP shape, AP duration restitution, and inducibility of triggered activity and alternans. To properly capture porcine Ca2+ transients, we introduced a two-step process with a faster release in the t-tubular region, followed by a slower diffusion-induced release from a non t-tubular subcellular region. The pig model behavior was compared with that of a human ventricular cardiomyocyte (O’Hara-Rudy) model. The pig, but not the human model, developed early afterdepolarizations (EADs) under block of IK1, while IKr block led to EADs in the human but not in the pig model. At fast rates (pacing cycle length = 400 ms), the human cell model was more susceptible to spontaneous Ca2+ release-mediated delayed afterdepolarizations (DADs) and triggered activity than pig. Fast pacing led to alternans in human but not pig. Developing species-specific models incorporating electrophysiology and Ca2+-handling provides a tool to aid translating antiarrhythmic and arrhythmogenic assessment from the bench to the clinic.  相似文献   
53.
NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na+ current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na+ current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine.  相似文献   
54.
The type II secretion system is a multiprotein assembly spanning the inner and outer membranes in Gram-negative bacteria. It is found in almost all pathogenic bacteria where it contributes to virulence, host tissue colonization, and infection. The exoproteins are secreted across the outer membrane via a large translocation channel, the secretin, which typically adopts a dodecameric structure. These secretin channels have large periplasmic N-terminal domains that reach out into the periplasm for communication with the inner membrane platform and with a pseudopilus structure that spans the periplasm. Here we report the crystal structure of the N-terminal periplasmic domain of the secretin XcpQ from Pseudomonas aeruginosa, revealing a two-lobe dimeric assembly featuring parallel subunits engaging in well defined interactions at the tips of each lobe. We have employed structure-based engineering of disulfide bridges and native mass spectrometry to show that the periplasmic domain of XcpQ dimerizes in a concentration-dependent manner. Validation of these insights in the context of cellular full-length XcpQ and further evaluation of the functionality of disulfide-linked XcpQ establishes that the basic oligomerization unit of XcpQ is a dimer. This is consistent with the notion that the dodecameric secretin assembles as a hexamer of dimers to ensure correct projection of the N-terminal domains into the periplasm. Therefore, our studies provide a key conceptual advancement in understanding the assembly principles and dynamic function of type II secretion system secretins and challenge recent studies reporting monomers as the basic subunit of the secretin oligomer.  相似文献   
55.
Midkine (MDK) is a heparin-binding growth factor that is highly expressed in many malignant tumors, including lung cancers. MDK activates the PI3K pathway and induces anti-apoptotic activity, in turn enhancing the survival of tumors. Therefore, the inhibition of MDK is considered a potential strategy for cancer therapy. In the present study, we demonstrate a novel small molecule compound (iMDK) that targets MDK. iMDK inhibited the cell growth of MDK-positive H441 lung adenocarcinoma cells that harbor an oncogenic KRAS mutation and H520 squamous cell lung cancer cells, both of which are types of untreatable lung cancer. However, iMDK did not reduce the cell viability of MDK-negative A549 lung adenocarcinoma cells or normal human lung fibroblast (NHLF) cells indicating its specificity. iMDK suppressed the endogenous expression of MDK but not that of other growth factors such as PTN or VEGF. iMDK suppressed the growth of H441 cells by inhibiting the PI3K pathway and inducing apoptosis. Systemic administration of iMDK significantly inhibited tumor growth in a xenograft mouse model in vivo. Inhibition of MDK with iMDK provides a potential therapeutic approach for the treatment of lung cancers that are driven by MDK.  相似文献   
56.
Aminoglycoside antibiotics that bind to 16S ribosomal RNA in the aminoacyl-tRNA site (A site) cause misreading of the genetic code and inhibit translocation. Structures of an A site RNA oligonucleotide free in solution and bound to the aminoglycosides paromomycin or gentamicin C1a have been determined by NMR. Recently, the X-ray crystal structure of the entire 30S subunit has been determined, free and bound to paromomycin. Distinct differences were observed in the crystal structure, particularly at A1493. Here, the NMR structure of the oligonucleotide-paromomycin complex was determined with higher precision and is compared with the X-ray crystal structure of the 30S subunit complex. The comparison shows the validity of both structures in identifying critical interactions that affect ribosome function.  相似文献   
57.
The elastic modulus of the Baker’s yeast (Saccharomyces cerevisiae) cell wall reported in studies using atomic force microscopy (AFM) is two orders of magnitude lower than that obtained using whole cell compression by micromanipulation. Using finite element modelling, it is shown that Hertz-Sneddon analysis cannot be applied to AFM indentation data for single layer core–shell structures. In addition, the Reissner solution for shallow homogeneous spheres is not appropriate for thick walls such as those of yeast cells. In order to explain yeast compression measurements at different length scales, a double layer wall model is presented considering a soft external layer composed of mannoproteins, and a stiff inner layer of β-glucan fibres and chitin. Under this model, previous AFM studies using sharp indenters provide reasonable estimates of the external layer elastic modulus, while micromanipulation provides the total stiffness of the cell wall. Data from both measurements are combined to estimate the mechanical properties of the inner stiff layer.  相似文献   
58.
Introductory genetics courses often include evolutionary genetics concepts such as sequence homology and functional conservation. It is usually assumed that two sequences showing homology (i.e., sharing a common ancestral sequence) perform the same molecular function. The correlation, however, does not always hold true, and evidence for functional conservation must come from functional studies. In this study we describe a genetics laboratory class that demonstrates functional conservation between the Drosophila protein Muscleblind (Mbl) and its human ortholog MBNL1. We use the Gal4/UAS system to express MBNL1 in a Drosophila mutant background and measure the in vivo activity of the human protein by rescue of mbl mutant phenotype in embryos. As a control, ubiquitous expression of Drosophila MblC, one of the four protein isoforms encoded by the gene, increased by 71% the viability of mbl mutant embryos and greatly reduced the hypercontracted abdomen of mutant larvae. In a parallel experiment, human MBNL1 provided a robust rescue of the embryonic lethality (78%) and improved abdomen hypercontraction as well. Under both conditions, rescued larvae die as first instars, probably due to overexpression effects, lack of alternative protein isoforms, or incomplete expression in critical tissues such as the nervous system. The use of two constructs in the rescue experiment (UAS-mblC and UAS-MBNL1) and the incomplete rescue prompt several questions for students. The fact that a human protein works in a Drosophila cellular context illustrates the use of an in vivo test to prove functional conservation.  相似文献   
59.
Capsule: Lesser Black-backed Gulls Larus fuscus breeding 30?km from the coast in the Netherlands focussed entirely on terrestrial food sources and reached relatively high breeding success.

Aim: To gain insight in the foraging ecology, habitat use and breeding performance of inland-breeding Lesser Black-backed Gulls.

Methods: We received data from seven birds fitted with global positioning system (GPS) loggers. The colony was frequently visited to collect pellets and boluses and to monitor reproductive success, mortality and growth rate of chicks.

Results: The GPS data revealed that mainly terrestrial habitats were used, 98% of these GPS positions were within 25?km of the colony. Refuse dumps were the most preferred sites, but also agricultural fields and freshwater bodies were often visited. Only two of the 710 recorded trips were directed to the North Sea. The pellet and bolus analyses confirmed the GPS data: no marine food remains were found. Breeding success of birds in the enclosure was relatively high, with 90% of eggs hatched and 51% of chicks fledged (1.6 chicks/pair).

Conclusions: Relying on terrestrial food is feasible when sources are available in the vicinity of the colony. We conclude that Lesser Black-backed Gulls could theoretically shift towards inland breeding after a fishery discards ban.  相似文献   

60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号