首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2628篇
  免费   303篇
  国内免费   2篇
  2022年   23篇
  2021年   57篇
  2020年   25篇
  2019年   35篇
  2018年   36篇
  2017年   53篇
  2016年   61篇
  2015年   101篇
  2014年   107篇
  2013年   151篇
  2012年   137篇
  2011年   155篇
  2010年   88篇
  2009年   75篇
  2008年   120篇
  2007年   105篇
  2006年   88篇
  2005年   99篇
  2004年   84篇
  2003年   93篇
  2002年   76篇
  2001年   52篇
  2000年   63篇
  1999年   57篇
  1998年   34篇
  1997年   32篇
  1996年   23篇
  1995年   26篇
  1993年   33篇
  1992年   43篇
  1991年   35篇
  1990年   52篇
  1989年   54篇
  1988年   41篇
  1987年   40篇
  1986年   32篇
  1985年   34篇
  1984年   33篇
  1983年   33篇
  1982年   33篇
  1981年   32篇
  1980年   26篇
  1979年   35篇
  1978年   35篇
  1977年   23篇
  1976年   27篇
  1975年   22篇
  1974年   30篇
  1973年   22篇
  1971年   20篇
排序方式: 共有2933条查询结果,搜索用时 31 毫秒
71.
72.
Almost every cell in the Drosophila pupal wing forms a single, distally pointing cuticular hair. The function of the frizzled (fz) gene is essential for the elaboration of the normal wing hair pattern. In the absence of fz function hairs develop, but they display an abnormal polarity. We have examined the developmental expression of the fi gene at the RNA level via in situ hybridization and at the protein level via Western blotting. We have found that fz is expressed in all regions of the epidermis before, during, and after the fz cold sensitive period. We have also found that fz function is not required for normal fi expression. We have further found that mutations in several other tissue polarity genes do not noticeably alter the expression or the modification state of the Fz protein. © 1994 Wiley-Liss, Inc.  相似文献   
73.
Clutch size, offspring performance, and intergenerational fitness   总被引:1,自引:1,他引:0  
It is now generally recognized that clutch size affects morethan offspring number. In particular, clutch size affects asuite of traits associated with offspring reproductive performance.Optimal clutch size is therefore determined not by the numericallymost productive clutch but by the clutch that maximizes collectiveoffspring reproductive success. Calculation of optimal clutchsize thus requires a consideration of ecological factors operatingduring an intergenerational time frame, spanning the lifetimeof the egglaying adult and the lifetimes of her offspring. Theoptimal clutch cannot define reproductive values in advance,but instead requires that the strategy chosen is the best responseto the set of reproductive values that it itself generates.In this article, we introduce methods for solving this problem,based on an iterative solution of the equation characterizingexpected lifetime reproductive success. We begin by consideringa semelparous organism, in which case lifetime reproductivesuccess is a function only of the state of the organism. Foran iteroparous organism, lifetime reproductive success dependsupon both state and time, so that our methods extend the usualstochastic dynamic programming approach to the evaluation oflifetime reproductive success. The methods are intuitive andeasily used. We consider both semelparous and iteroparous organisms,stable and varying environments, and describe how our methodscan be employed empirically.  相似文献   
74.
Escherichia coli chemotaxis was inhibited by omega-conotoxin, a calcium ion channel blocker. With Tris-EDTA-permeabilized cells, nanomolar levels of omega-conotoxin inhibited chemotaxis without loss of motility. Cells treated with omega-conotoxin swam with a smooth bias, i.e., tumbling was inhibited.  相似文献   
75.
The energetics and accumulation of solutes in Saccharomyces cerevisiae were investigated for cells grown aerobically in a chemostat under NaCl stress and glucose limitation. Changed energy requirements in relation to external salinity were examined by energy balance determinations performed by substrate and product analyses, with the latter including heat measurements by microcalorimetry. In both 0 and 0.9 M NaCl cultures, the catabolism was entirely respiratory at the lowest dilution rates tested but shifted to a mixed respiratory-fermentative metabolism at higher dilution rates. This shift occurred at a considerably lower dilution rate for salt-grown cells. The intracellular solute concentrations, as calculated on the basis of intracellular soluble space determinations, showed that the internal Na+ concentration increased from about 0.02 molal in basal medium to about 0.18 molal in 0.9 M NaCl medium, while intracellular K+ was maintained around 0.29 molal despite the variation in external salinity. The intracellular glycerol concentration increased from below 0.05 molal at low salinity to about 1.2 molal at 0.9 M NaCl. The concentrations of the internal solutes, however, changed insignificantly with growth rate and energy metabolism. The additional maintenance energy expenditure for growth at 0.9 M NaCl was, depending on the growth rate, 14 to 31% of the total energy requirement for growth at 0 M NaCl. Including the energy conserved in glycerol, the total additional energy demand for growth at 0.9 M NaCl corresponded to 28 to 51% of the energy required for growth at 0 M NaCl.  相似文献   
76.
77.
Expression of SPARC (secreted protein acidic and rich in cysteine), a 43-kDa extracellular matrix-associated glycoprotein involved in tissue remodeling, was quantitated during normal human keratinocyte (NHK) growth in culture and as a function of sodium n-butyrate (NaB)-induced differentiation to mature enucleate cornified envelopes (CEs). Low levels of SPARC expression were observed in the basal-like cells of control NHKs, with isolated cells showing intense SPARC expression on the ventral surface. After addition of NaB, SPARC expression increased and the pattern of expression shifted to one involving predominantly suprabasal cells (i.e., spinous cells, pre-CEs, and mature CEs). Dense deposits of SPARC often surrounded the mature CEs. Flow cytometric analysis indicated that approximately 13% of NHKs expressed SPARC within 24 h of seeding into culture. This fraction of SPARC+ cells increased with time and peaked immediately postconfluence (31.3 ± 6.3% SPARC+). Cellular SPARC expression then decreased to baseline levels during entrance into plateau phase growth. SPARC was detectable in all phases of the cell cycle. SPARC levels were more intense and heterogeneous within the G2/M and G1 phases while S phase cells exhibited relatively homogeneous, low intensity, SPARC expression. During NaB-induced NHK differentiation, SPARC intracellular content increased prior to the onset of CE formation (i.e., 2 days after its addition) followed by a period of extracellular accumulation which coincided with the time of maximal CE generation (i.e., Days 4 and 5 after NaB addition). Correlation of cell size with anti-SPARC immunoreactivity revealed a predominance of SPARC expression in cells with a suprabasal phenotype. NHKs cultured on fibronectin (FN), an established modulator of epidermal cell maturation in vitro, showed a similar response to NaB. In general, however, the level of NaB-induced SPARC expression was considerably reduced in FN cultures correlating with a lower efficiency of CE formation. Induced SPARC expression was, in large part, dependent on autocrine transforming growth factor-β (TGF-β) production since incubation in the presence of NaB + neutralizing antibodies to TGF-β inhibited both the expression of SPARC by 72% and development of mature CEs.  相似文献   
78.
The terrestrial water cycle links the soil and atmosphere moisture reservoirs through four fluxes: precipitation, evaporation, runoff, and atmospheric moisture convergence (net import of water vapor to balance runoff). Each of these processes is essential for sustaining human and ecosystem well-being. Predicting how the water cycle responds to changes in vegetation cover remains a challenge. Recently, changes in plant transpiration across the Amazon basin were shown to be associated disproportionately with changes in rainfall, suggesting that even small declines in transpiration (e.g., from deforestation) would lead to much larger declines in rainfall. Here, constraining these findings by the law of mass conservation, we show that in a sufficiently wet atmosphere, forest transpiration can control atmospheric moisture convergence such that increased transpiration enhances atmospheric moisture import and results in water yield. Conversely, in a sufficiently dry atmosphere increased transpiration reduces atmospheric moisture convergence and water yield. This previously unrecognized dichotomy can explain the otherwise mixed observations of how water yield responds to re-greening, as we illustrate with examples from China's Loess Plateau. Our analysis indicates that any additional precipitation recycling due to additional vegetation increases precipitation but decreases local water yield and steady-state runoff. Therefore, in the drier regions/periods and early stages of ecological restoration, the role of vegetation can be confined to precipitation recycling, while once a wetter stage is achieved, additional vegetation enhances atmospheric moisture convergence and water yield. Recent analyses indicate that the latter regime dominates the global response of the terrestrial water cycle to re-greening. Evaluating the transition between regimes, and recognizing the potential of vegetation for enhancing moisture convergence, are crucial for characterizing the consequences of deforestation as well as for motivating and guiding ecological restoration.  相似文献   
79.

Motivation

Home range is a common measure of use of space by animals because it provides ecological information that is useful for conservation applications. In macroecological studies, values are typically aggregated to species means to examine general patterns of use of space by animals. However, this ignores the environmental context in which the home range was estimated and does not account for intraspecific variation in home range size. In addition, the focus of macroecological studies on home ranges has historically been biased towards terrestrial mammals. The use of aggregated numbers and the terrestrial focus limit our ability to examine home-range patterns across different environments, their variation in time and variation between different levels of organization. Here, we introduce HomeRange, a global database with 75,611 home-range values across 960 different species of mammals, including terrestrial, aquatic and aerial species.

Main types of variables contained

The dataset contains estimates of home ranges of mammals, species names, methodological information on data collection, method of home-range estimation, period of data collection, study coordinates and name of location, in addition to species traits derived from the studies, such as body mass, life stage, reproductive status and locomotor habit.

Spatial location and grain

The collected data are distributed globally. Across studies, the spatial accuracy varies, with the coarsest resolution being 1°.

Time period and grain

The data represent information published between 1939 and 2022. Across studies, the temporal accuracy varies; some studies report start and end dates specific to the day, whereas for other studies only the month or year is reported.

Major taxa and level of measurement

Mammalian species from 24 of the 27 different taxonomic orders. Home-range estimates range from individual-level values to population-level averages.

Software format

Data are supplied as a comma-delimited text file (.csv) and can be loaded directly into R using the “HomeRange” R package ( https://github.com/SHoeks/HomeRange ).  相似文献   
80.
Free-living nematodes are known to ingest food-borne pathogens and may serve as vectors to contaminate preharvest fruits and vegetables. Caenorhabditis elegans was selected as a model to study the effectiveness of sanitizers in killing Salmonella enterica serotype Poona ingested by free-living nematodes. Aqueous suspensions of adult worms that had fed on S. enterica serotype Poona were treated with produce sanitizers. Treatment with 20 μg of free chlorine/ml significantly (α = 0.05) reduced the population of S. enterica serotype Poona compared to results for treating worms with water (control). However, there was no significant difference in the number of S. enterica serotype Poona cells surviving treatments with 20 to 500 μg of chlorine/ml, suggesting that reductions caused by treatment with 20 μg of chlorine/ml resulted from inactivation of S. enterica serotype Poona on the surface of C. elegans but not cells protected by the worm cuticle after ingestion. Treatment with Sanova (850 or 1,200 μg/ml), an acidified sodium chlorite sanitizer, caused reductions of 5.74 and 6.34 log10 CFU/worm, respectively, compared to reductions from treating worms with water. Treatment with 20 or 40 μg of Tsunami 200/ml, a peroxyacetic acid-based sanitizer, resulted in reductions of 4.83 and 5.34 log10 CFU/worm, respectively, compared to numbers detected on or in worms treated with water. Among the organic acids evaluated at a concentration of 2%, acetic acid was the least effective in killing S. enterica serotype Poona and lactic acid was the most effective. Treatment with up to 500 μg of chlorine/ml, 1% hydrogen peroxide, 2,550 μg of Sanova/ml, 40 μg of Tsunami 200/ml, or 2% acetic, citric, or lactic acid had no effect on the viability or reproductive behavior of C. elegans. Treatments were also applied to cantaloupe rind and lettuce inoculated with S. enterica serotype Poona or C. elegans that had ingested S. enterica serotype Poona. Protection of ingested S. enterica serotype Poona against sanitizers applied to cantaloupe was not evident; however, ingestion afforded protection of the pathogen on lettuce. These results indicate that S. enterica serotype Poona ingested by C. elegans may be protected against treatment with chlorine and other sanitizers, although the basis for this protection remains unclear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号