首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1612篇
  免费   70篇
  国内免费   110篇
  2024年   1篇
  2023年   24篇
  2022年   43篇
  2021年   81篇
  2020年   54篇
  2019年   65篇
  2018年   53篇
  2017年   35篇
  2016年   57篇
  2015年   91篇
  2014年   100篇
  2013年   103篇
  2012年   161篇
  2011年   131篇
  2010年   75篇
  2009年   70篇
  2008年   96篇
  2007年   75篇
  2006年   73篇
  2005年   56篇
  2004年   56篇
  2003年   40篇
  2002年   21篇
  2001年   38篇
  2000年   21篇
  1999年   20篇
  1998年   15篇
  1997年   17篇
  1996年   13篇
  1995年   10篇
  1994年   11篇
  1993年   12篇
  1992年   18篇
  1991年   12篇
  1990年   10篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1792条查询结果,搜索用时 15 毫秒
111.
112.
113.
The purpose of this study was to investigate the effects of a horizontal approach run and drop height on the activation of lower extremity muscles during drop jumps. Ten participants performed drop jumps from drop heights of 15, 30, 45 and 60 cm with zero (standing), one, two, and three approach run steps. The EMG activities of the Gluteus Maximus (GM), Rectus Femoris (RF), Biceps Femoris (BF), Vastus Lateralis (VL), Tibialis Anterior (TA), Gastrocnemius (GA) and Soleus (SO) were recorded, full-wave rectified, and averaged (aEMG) during the preactivation (50 ms before touchdown), downward, and push-off phases. Increasing drop height did not enhance the muscle activation level of any examined muscles except GA. During the preactivation phase, the aEMG of all muscles except TA increased with the number of approach run steps. The aEMG of RF, BF, VL, and SO also increased with the number of approach run steps during the downward phase, while no aEMG changes were observed during the push-off phase. These results suggest that a horizontal approach run preceding the drop jump is an effective strategy for increasing the muscle preactivation level, which contributes to a higher level of muscle activity during the eccentric contraction phase and could potentially contribute to the reported higher power output during the concentric contraction phase.  相似文献   
114.
Protein folding rates vary by several orders of magnitude and they depend on the topology of the fold and the size and composition of the sequence. Although recent works show that the rates can be predicted from the sequence, allowing for high‐throughput annotations, they consider only the sequence and its predicted secondary structure. We propose a novel sequence‐based predictor, PFR‐AF, which utilizes solvent accessibility and residue flexibility predicted from the sequence, to improve predictions and provide insights into the folding process. The predictor includes three linear regressions for proteins with two‐state, multistate, and unknown (mixed‐state) folding kinetics. PFR‐AF on average outperforms current methods when tested on three datasets. The proposed approach provides high‐quality predictions in the absence of similarity between the predicted and the training sequences. The PFR‐AF's predictions are characterized by high (between 0.71 and 0.95, depending on the dataset) correlation and the lowest (between 0.75 and 0.9) mean absolute errors with respect to the experimental rates, as measured using out‐of‐sample tests. Our models reveal that for the two‐state chains inclusion of solvent‐exposed Ala may accelerate the folding, while increased content of Ile may reduce the folding speed. We also demonstrate that increased flexibility of coils facilitates faster folding and that proteins with larger content of solvent‐exposed strands may fold at a slower pace. The increased flexibility of the solvent‐exposed residues is shown to elongate folding, which also holds, with a lower correlation, for buried residues. Two case studies are included to support our findings. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
115.
Litter decomposition is an important ecosystem process regulated by both biotic factors (e.g., decomposers and litter types) and abiotic factors (e.g., temperature and moisture). This study examined the regulatory effects of soil fauna and microclimate on decomposition of two substrates (Castanopsis carlesii and Pinus taiwanensis) along an elevation gradient in four ecosystems of zonal vegetation types in southeastern China: evergreen broadleaf forest (EVB), coniferous forest (COF), dwarf forest (DWF), and alpine meadow (ALM). Our objective was to identify the mechanisms by which microclimate, substrate, and fauna control litter decomposition, especially where variations in ecosystem structure and environment are markedly shown across an elevation gradient. The hypotheses were as follows: (1) litter decomposition within the same litter type would decrease across the elevation gradient, (2) litter decomposition would be lower in poorer nutrient quality substrate across the four sites, and (3) litter dynamics, influenced by strong interactions among ecosystem type, litter type, and decomposers, would vary by elevation gradient due to microclimate effects (i.e., temperature and moisture). The decomposition rates of C. carlesii were significantly higher than those of P. taiwanensis at EVB, COF, and DWF sites; however, they were not significantly different at the ALM site. Low elevation forests possessed a microclimate (warm and humid) that favors decomposer activities and also appeared to possess a decomposer community adapted to consuming large amounts of leaf litter, as indicated by the rapid leaf litter loss. Litter decomposition in micro-mesh bags proceeded more slowly compared to litter in meso-mesh and macro-mesh litterbags across the elevation gradient, indicating that restricting some detritivore access to litter reduced litter mass loss. We suggest that microclimate and faunal contributions to plant litter decomposition differ markedly across the ecosystems in the Wuyi Mountains.  相似文献   
116.
This study determined effects of dietary supplementation with l-arginine (Arg) or N-carbamylglutamate (NCG) on intestinal health and growth in early-weaned pigs. Eighty-four Landrace × Yorkshire pigs (average body weight of 5.56 ± 0.07 kg; weaned at 21 days of age) were fed for 7 days one of the three isonitrogenous diets: (1) a corn- and soybean meal-based diet (CSM), (2) CSM + 0.08% NCG (0.08%), and (3) CSM + 0.6% Arg. There were four pens of pigs per diet (7 pigs/pen). At the end of a 7-day feeding period, six piglets were randomly selected from each treatment for tissue collections. Compared with the control group, Arg or NCG supplementation increased (P < 0.05): (1) Arg concentrations in plasma, (2) small-intestinal growth, (3) villus height in duodenum, jejunum and ileum, (4) crypt depth in jejunum and ileum, (5) goblet cell counts in intestinal mucosae, and (6) whole-body weight gain in pigs. Real-time polymerase chain reaction and western blotting analyses revealed that both mRNA and protein levels for heat shock protein-70 (HSP70) were higher (P < 0.05) in the intestinal mucosae of Arg- or NCG-supplemented pigs than in the control group. Furthermore, the incidence of diarrhea in the NCG group was 18% lower (P < 0.01) than that in the control group. Collectively, these results indicate that dietary supplementation with 0.6% Arg or 0.08% NCG enhances intestinal HSP70 gene expression, intestinal growth and integrity, and the availability of dietary nutrients for whole-body weight gain in postweaning pigs fed a CSM-based diet. Thus, Arg or NCG is a functional ingredient in the weaning diet to improve nutrition, health, and growth performance of these neonates.  相似文献   
117.
Abstract The whitefly Bemisia tabaci has a global distribution and extensive genetic diversity. Recent phylogenetic analyses as well as crossing experiments suggest that B. tabaci is a complex composed of > 20 cryptic species, but more crossing studies are required to examine the reproductive compatibility among the putative species and thus further clarify the systematics of this species complex. We conducted crossing experiments and behavioral observations to investigate the reproductive compatibility between the Mediterranean, Asia II 3, and Asia II 1 putative species of B. tabaci collected from Zhejiang, China. Female progeny were never produced in inter-species crosses, demonstrating a lack of egg fertilization; while 55%–75% females were produced in all the intra-species treatments. Continuous behavioral observations showed that frequent courtship events occurred in both intra-species treatments and inter-putative species crosses. However, copulation events occurred only in the three intra-species treatments with one exception: that one copulation event occurred between Asia II 3 and Mediterranean in the crosses where two cohorts of females and males of different putative species were enclosed together in a small arena but were not allowed access to their intra-specific mates for a long period of time. These data demonstrated complete reproductive isolation between the Mediterranean, Asia II 3, and Asia II 1 putative species, and further showed that the isolation is due to lack of copulation. Demonstration of reproductive isolation between the Mediterranean and two indigenous putative species from China provides further evidence for the existence of cryptic species within the B. tabaci complex.  相似文献   
118.
Vacuolar invertase (VIN) has long been considered as a major player in cell expansion. However, direct evidence for this view is lacking due, in part, to the complexity of multicellular plant tissues. Here, we used cotton (Gossypium spp.) fibers, fast-growing single-celled seed trichomes, to address this issue. VIN activity in elongating fibers was approximately 4-6-fold higher than that in leaves, stems, and roots. It was undetectable in fiberless cotton seed epidermis but became evident in initiating fibers and remained high during their fast elongation and dropped when elongation slowed. Furthermore, a genotype with faster fiber elongation had significantly higher fiber VIN activity and hexose levels than a slow-elongating genotype. By contrast, cell wall or cytoplasmic invertase activities did not show correlation with fiber elongation. To unravel the molecular basis of VIN-mediated fiber elongation, we cloned GhVIN1, which displayed VIN sequence features and localized to the vacuole. Once introduced to Arabidopsis (Arabidopsis thaliana), GhVIN1 complemented the short-root phenotype of a VIN T-DNA mutant and enhanced the elongation of root cells in the wild type. This demonstrates that GhVIN1 functions as VIN in vivo. In cotton fiber, GhVIN1 expression level matched closely with VIN activity and fiber elongation rate. Indeed, transformation of cotton fiber with GhVIN1 RNA interference or overexpression constructs reduced or enhanced fiber elongation, respectively. Together, these analyses provide evidence on the role of VIN in cotton fiber elongation mediated by GhVIN1. Based on the relative contributions of sugars to sap osmolality in cotton fiber and Arabidopsis root, we conclude that VIN regulates their elongation in an osmotic dependent and independent manner, respectively.Suc is the principal end product of photosynthesis in higher plants and the major carbohydrate translocated from source to sink tissues through phloem. Suc cleavage, serving as a starting point for various carbohydrate metabolic pathways, is catalyzed by Suc synthase (EC 2.4.1.13) and invertase (β-fructofuranosidase; EC 3.2.1.26). In contrast to the reversible reaction of Suc synthase, invertase irreversibly hydrolyzes Suc to Fru and Glc. This hydrolysis step is required for the development of many sink tissues and their responses to various stresses (Sturm, 1999; Weschke et al., 2003; Roitsch and González, 2004; Huang et al., 2007; Essmann et al., 2008; Jin et al., 2009; for a recent review, see Ruan et al., 2010).Based on their pH optimums and subcellular localizations, invertases are classified into three isoforms: a nonglycosylated cytosolic invertase (CIN), with an optimal pH of 7.0 to 7.8, and highly glycosylated acid invertases with an optimum pH of 3.5 to 5.5 either tightly bound to cell wall (CWIN) or appearing as a soluble form inside the vacuole (VIN; Roitsch and González, 2004). Mutational and transgenic studies have established the critical roles of CWIN in the development of seed (Cheng et al., 1996; Ruan et al., 2003), pollen (Roitsch et al., 2003), root (Tang et al., 1999), and leaf and fruit (Jin et al., 2009). By contrast, much less is known about the function of VIN or CIN (Ruan et al., 2010).High VIN expression or activity has been observed in a range of expanding tissues, including maize (Zea mays) ovaries (Andersen et al., 2002; McLaughlin and Boyer, 2004), grape (Vitis vinifera) berry (Davies and Robinson, 1996), carrot (Daucus carota) taproot (Tang et al., 1999), and sugar beet (Beta vulgaris) petioles (González et al., 2005). It is hypothesized that VIN may play a major role in plant cell expansion, a key step in plant cell development (González et al., 2005). However, progress in determining the roles of VIN in cell expansion suffers from several experimental limitations. Most notably, the multicellular nature of plant tissues makes it difficult to quantitatively evaluate the contribution of VIN in specific cell types. For example, decrease of VIN expression is associated with maize ovary abortion or reduction in its expansion (Andersen et al., 2002; McLaughlin and Boyer, 2004). The VIN gene Ivr2, however, is expressed in nucellus and vascular bundles of the pedicel deeply embedded within the pericarp (Andersen et al., 2002). This inherent anatomical feature makes it challenging to experimentally assess the role of invertase in these cells.In this context, developing cotton (Gossypium hirsutum) fiber offers a tractable experimental system to study the role of invertase in cell expansion for the following reasons. First, after initiation from the ovule epidermis at anthesis, the single-celled cotton fibers undergo rapid and synchronized unidirectional expansion to several centimeters long by approximately 18 d after anthesis (DAA; Ruan et al., 2001). Hence, a large quantity of homogenous single cells can be readily harvested for studying the control of cell expansion (Ruan, 2007). Second, compelling evidence has indicated a major role of osmotically active solutes in fiber elongation through the generation of cell turgor (Ruan et al., 2004). To this end, Suc moves into fibers symplasmically early in elongation (Ruan et al., 2001), and hexoses accumulated in the vacuole are major osmotically active solutes in the fiber sap (Dhindsa et al., 1975; Ruan et al., 1997), where VIN activity has been reported (Wäfler and Meier, 1994). These observations raise the possibility that VIN may be a central player in osmotically driven fiber expansion (Andersen et al., 2002; Ruan, 2005). Finally, elucidating the role of VIN in cotton fiber could help us not only better understand the control of rapid cell expansion but also identify novel ways to increase fiber length, a key quality and yield determinant of cotton, the most important textile crop worldwide (Ruan, 2005).This study aims to examine the role of VIN in cell expansion by using cotton fiber as a model, coupled with integrative analyses on elongating root of Arabidopsis (Arabidopsis thaliana). A combination of cellular, biochemical, and molecular genetic analyses show that (1) rapid fiber expansion requires high activity of VIN, which is probably exerted by the expression of GhVIN1, and (2) the impact on cotton fiber and Arabidopsis root elongation by VIN is most likely achieved through an osmotic dependent and independent manner, respectively.  相似文献   
119.
Global analysis of an epidemic model with nonmonotone incidence rate   总被引:2,自引:0,他引:2  
In this paper we study an epidemic model with nonmonotonic incidence rate, which describes the psychological effect of certain serious diseases on the community when the number of infectives is getting larger. By carrying out a global analysis of the model and studying the stability of the disease-free equilibrium and the endemic equilibrium, we show that either the number of infective individuals tends to zero as time evolves or the disease persists.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号