首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   19篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   8篇
  2012年   8篇
  2011年   12篇
  2010年   6篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   14篇
  2005年   4篇
  2004年   7篇
  2003年   15篇
  2002年   12篇
  2001年   7篇
  1999年   6篇
  1998年   2篇
  1996年   2篇
  1987年   2篇
  1986年   1篇
  1981年   2篇
  1980年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有162条查询结果,搜索用时 187 毫秒
61.
Gaucher disease is a lysosomal storage disorder caused by deficiency of glucocerebrosidase enzymatic activity leading to accumulation of its substrate glucocerebrosidase mainly in macrophages. Skeletal disorder of Gaucher disease is the major cause of morbidity and is highly refractory to enzyme replacement therapy. However, pathological mechanisms of bone alterations in Gaucher disease are still poorly understood. We hypothesized that cellular alteration in Gaucher disease produces a proinflammatory milieu leading to bone destruction through enhancement of monocyte differentiation to osteoclasts and osteoclasts resorption activity. Against this background we decided to investigate in an in vitro chemical model of Gaucher disease, the capacity of secreted soluble mediators to induce osteoclastogenesis, and the mechanism responsible for this phenomena. We demonstrated that soluble factors produced by CBE-treated PBMC induced differentiation of osteoclasts precursors into mature and active osteoclasts that express chitotriosidase and secrete proinflammatory cytokines. We also showed a role of TNF-α in promoting osteoclastogenesis in Gaucher disease chemical model. To analyze the biological relevance of T cells in osteoclastogenesis of Gaucher disease, we investigated this process in T cell-depleted PBMC cultures. The findings suggest that T cells play a role in osteoclast formation in Gaucher disease. In conclusion, our data suggests that in vitro GCASE deficiency, along with concomitant glucosylceramide accumulation, generates a state of osteoclastogenesis mediated in part by pro-resorptive cytokines, especially TNF-α. Moreover, T cells are involved in osteoclastogenesis in Gaucher disease chemical model.  相似文献   
62.
A fundamental question in G protein coupled receptor biology is how a single ligand acting at a specific receptor is able to induce a range of signaling that results in a variety of physiological responses. We focused on Type 1 cannabinoid receptor (CB1R) as a model GPCR involved in a variety of processes spanning from analgesia and euphoria to neuronal development, survival and differentiation. We examined receptor dimerization as a possible mechanism underlying expanded signaling responses by a single ligand and focused on interactions between CB1R and delta opioid receptor (DOR). Using co-immunoprecipitation assays as well as analysis of changes in receptor subcellular localization upon co-expression, we show that CB1R and DOR form receptor heteromers. We find that heteromerization affects receptor signaling since the potency of the CB1R ligand to stimulate G-protein activity is increased in the absence of DOR, suggesting that the decrease in CB1R activity in the presence of DOR could, at least in part, be due to heteromerization. We also find that the decrease in activity is associated with enhanced PLC-dependent recruitment of arrestin3 to the CB1R-DOR complex, suggesting that interaction with DOR enhances arrestin-mediated CB1R desensitization. Additionally, presence of DOR facilitates signaling via a new CB1R-mediated anti-apoptotic pathway leading to enhanced neuronal survival. Taken together, these results support a role for CB1R-DOR heteromerization in diversification of endocannabinoid signaling and highlight the importance of heteromer-directed signal trafficking in enhancing the repertoire of GPCR signaling.  相似文献   
63.
Classical xanthinuria is a rare inherited metabolic disorder caused by either isolated xanthine dehydrogenase (XDH) deficiency (type I) or combined XDH and aldehyde oxidase (AO) deficiency (type II). XDH and AO are evolutionary related enzymes that share a sulfurated molybdopterin cofactor. While the role of XDH in purine metabolism is well established, the physiologic functions of AO are mostly unknown. XDH and AO are important drug metabolizing enzymes. Urine metabolomic analysis by high pressure liquid chromatography and mass spectrometry of xanthinuric patients was performed to unveil physiologic functions of XDH and AO and provide biomarkers for typing xanthinuria. Novel endogenous products of AO, hydantoin propionic acid, N1-methyl-8-oxoguanine and N-(3-acetamidopropyl) pyrrolidin-2-one formed in the histidine, nucleic acid and spermidine metabolic pathways, respectively, were identified as being lowered in type II xanthinuria. Also lowered were the known AO products, N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-5-carboxamide in the nicotinamide degradation pathway. In contrast to the KEGG annotations, the results suggest minor role of human AO in the conversion of pyridoxal to pyridoxate and gentisaldehyde to gentisate in the vitamin B6 and tyrosine metabolic pathways, respectively. The perturbations in purine degradation due to XDH deficiency radiated further from the previously known metabolites, uric acid, xanthine and hypoxanthine to guanine, methyl guanine, xanthosine and inosine. Possible pathophysiological implications of the observed metabolic perturbations are discussed. The identified biomarkers have the potential to replace the allopurinol-loading test used in the past to type xanthinuria, thus facilitating appropriate pharmacogenetic counseling and gene directed search for causative mutations.  相似文献   
64.
The seedling root system of the seagrass Posidonia oceanica consists of a primary root and up to four adventitious roots. Under culture, germination and early growth began with the emergence of the primary root in the first week. Then the two adventitious root primordia originally present in the seed emerged at 3 and 5 weeks respectively, followed successively by further adventitious roots. Primary roots reached 17 mm at 4 weeks, but then their growth decreased markedly. In contrast the adventitious roots showed a pattern of continued elongation. Anatomical observations of both primary and adventitious roots revealed a multilayered hypodermis of thick-walled cells enclosing a wide cortex (99% of the root transverse area) and narrow stele. A well-distinguished endodermis was only observed in the primary roots, while differentiated xylem elements were found solely in the adventitious roots, but it is unclear to what degree differences between the two root types are due to different root maturity or to their role in water and nutrient uptake. Overall, the P. oceanica seedling root system is composed of multiple, rapidly formed roots which are strong yet flexible due to a large proportion of cortical tissue and further strengthened by a multilayered hypodermis, characteristics which could potentially facilitate initial anchorage and establishment.  相似文献   
65.
66.
The lesser snow goose (Anser caerulescens caerulescens) has been exterminated across a vast area of Eurasia. At present, it is unable to regenerate there, though its population in North America has reached fifteen million. In Eurasia, the only major nesting colony still persists on Wrangel Island, where the geese use the trophic resources together with ruminants. An assessment of the competitive networks and the trophic interactions between the geese and the ruminants was performed. The analysis of the significance of the trophic niche overlap and the competitive advantages of geese in the habitat preferences has proved that the ruminants are stronger competitors for trophic resources than the geese. It has been ascertained that the levels of competition for trophic resources and/or resource shortages are higher across the habitats of most types associated with the goose colony. The level of the competition for trophic resources is lower, and the feed resources are more diverse and abundant in the habitats that are used by the geese after leaving the colony. It can be concluded that the shortage of resources and/or the stronger competitors for trophic resources (the ruminants) cannot prevent restoration of extinct colonies or the formation of new colonies with a recent increase in the size of the goose population on Wrangel Island. The distribution, abundance, and quality of trophic resources and the competition for them with ruminants do not determine the goose choice of a habitat for a nesting colony. The choice depends on the microclimate and, probably, on a range of other factors.  相似文献   
67.
68.
Enteric hyperoxaluria (EH) is a metabolic disease caused by excessive absorption of dietary oxalate leading to the formation of chronic kidney stones and kidney failure. There are no approved pharmaceutical treatments for EH. SYNB8802 is an engineered bacterial therapeutic designed to consume oxalate in the gut and lower urinary oxalate as a potential treatment for EH. Oral administration of SYNB8802 leads to significantly decreased urinary oxalate excretion in healthy mice and non‐human primates, demonstrating the strain''s ability to consume oxalate in vivo. A mathematical modeling framework was constructed that combines in vitro and in vivo preclinical data to predict the effects of SYNB8802 administration on urinary oxalate excretion in humans. Simulations of SYNB8802 administration predict a clinically meaningful lowering of urinary oxalate excretion in healthy volunteers and EH patients. Together, these findings suggest that SYNB8802 is a promising treatment for EH.  相似文献   
69.
Aminopeptidase A (APA, EC 3.4.11.7) is a type II integral membrane glycoprotein responsible for the conversion of angiotensin II to angiotensin III in the brain. Previous site-directed mutagenesis studies and the recent molecular modeling of the APA zinc metallopeptidase domain have shown that all the amino acids involved in catalysis are located between residues 200 and 500. The APA ectodomain is cleaved in the kidney into an N-terminal fragment corresponding to the zinc metallopeptidase domain, and a C-terminal fragment of unknown function. We investigated the function of this C-terminal domain, by expressing truncated APAs in Chinese hamster ovary and AtT-20 cells. Deletion of the C-terminal domain abolished the maturation and enzymatic activity of the N-terminal domain, which was retained in the endoplasmic reticulum as an unfolded protein bound to calnexin. Expression in trans of the C-terminal domain resulted in association of the N- and C-terminal domains soon after biosynthesis, allowing folding rescue, maturation, cell surface expression, and activity of the N-terminal zinc metallopeptidase domain. We also show that the C-terminal domain is not required for the catalytic activity of APA but is essential for its activation. Moreover, we show that the C-terminal domain of aminopeptidase N (EC 3.4.11.2, APN) also promotes maturation and cell surface expression of the N-terminal domain of APN, suggesting a common role of the C-terminal domain in the monozinc aminopeptidase family. Our data provide the first demonstration that the C-terminal domain of an eukaryotic exopeptidase acts as an intramolecular chaperone.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号