首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   28篇
  230篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   11篇
  2013年   5篇
  2012年   24篇
  2011年   15篇
  2010年   3篇
  2009年   9篇
  2008年   15篇
  2007年   4篇
  2006年   7篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   8篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   10篇
  1990年   13篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1979年   2篇
  1978年   1篇
  1976年   4篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1970年   2篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
11.
Down syndrome is a complex genetic and metabolic disorder attributed to the presence of three copies of chromosome 21. The extra chromosome derives from the mother in 93% of cases and is due to abnormal chromosome segregation during meiosis (nondisjunction). Except for advanced age at conception, maternal risk factors for meiotic nondisjunction are not well established. A recent preliminary study suggested that abnormal folate metabolism and the 677C-->T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene may be maternal risk factors for Down syndrome. The present study was undertaken with a larger sample size to determine whether the MTHFR 677C-->T polymorphism was associated with increased risk of having a child with Down syndrome. Methionine synthase reductase (MTRR) is another enzyme essential for normal folate metabolism. A common polymorphism in this gene was recently associated with increased risk of neural tube defects and might also contribute to increased risk for Down syndrome. The frequencies of the MTHFR 677C-->T and MTRR 66A-->G mutations were evaluated in DNA samples from 157 mothers of children with Down syndrome and 144 control mothers. Odds ratios were calculated for each genotype separately and for potential gene-gene interactions. The results are consistent with the preliminary observation that the MTHFR 677C-->T polymorphism is more prevalent among mothers of children with Down syndrome than among control mothers, with an odds ratio of 1.91 (95% confidence interval [CI] 1.19-3.05). In addition, the homozygous MTRR 66A-->G polymorphism was independently associated with a 2. 57-fold increase in estimated risk (95% CI 1.33-4.99). The combined presence of both polymorphisms was associated with a greater risk of Down syndrome than was the presence of either alone, with an odds ratio of 4.08 (95% CI 1.94-8.56). The two polymorphisms appear to act without a multiplicative interaction.  相似文献   
12.
To investigate compensatory adaptation (CA), we used genotypes of Escherichia coli which were identical except for one or two deleterious mutations. We compared CA for (i) deleterious mutations with large versus small effects, (ii) genotypes carrying one versus two mutations, and (iii) pairs of deleterious mutations which interact in a multiplicative versus synergistic fashion. In all, we studied 14 different genotypes, plus a control strain which was not mutated. Most genotypes showed CA during 200 generations of experimental evolution, where we define CA as a fitness increase which is disproportionately large relative to that in evolving control lines, coupled with retention of the original deleterious mutation(s). We observed greater CA for mutations of large effect than for those of small effect, which can be explained by the greater benefit to recovery in severely handicapped genotypes given the dynamics of selection. The rates of CA were similar for double and single mutants whose initial fitnesses were approximately equal. CA was faster for synergistic than for multiplicative pairs, presumably because the marginal gain which results from CA for one of the component mutations is greater in that case. The most surprising result in our view, is that compensation should be so readily achieved in an organism which is haploid and has little genetic redundancy This finding suggests a degree of versatility in the E. coil genome which demands further study from both genetic and physiological perspectives.  相似文献   
13.
We developed a modified allele-specific PCR procedure for assaying single nucleotide polymorphisms (SNPs) and used the procedure (called SNAP for single-nucleotide amplified polymorphisms) to generate 62 Arabidopsis mapping markers. SNAP primers contain a single base pair mismatch within three nucleotides from the 3' end of one allele (the specific allele) and in addition have a 3' mismatch with the nonspecific allele. A computer program called SNAPER was used to facilitate the design of primers that generate at least a 1,000-fold difference in the quantity of the amplification products from the specific and nonspecific SNP alleles. Because SNAP markers can be readily assayed by electrophoresis on standard agarose gels and because a public database of over 25,000 SNPs is available between the Arabidopsis Columbia and Landsberg erecta ecotypes, the SNAP method greatly facilitates the map-based cloning of Arabidopsis genes defined by a mutant phenotype.  相似文献   
14.
Anisomycin, a translational inhibitor secreted by Streptomyces spp., strongly activates the stress-activated mitogen-activated protein (MAP) kinases JNK/SAPK (c-Jun NH2-terminal kinase/stress-activated protein kinase) and p38/RK in mammalian cells, resulting in rapid induction of immediate-early (IE) genes in the nucleus. Here, we have characterized this response further with respect to homologous and heterologous desensitization of IE gene induction and stress kinase activation. We show that anisomycin acts exactly like a signalling agonist in eliciting highly specific and virtually complete homologous desensitization. Anisomycin desensitization of a panel of IE genes (c-fos, fosB, c-jun, junB, and junD), using epidermal growth factor (EGF), basic fibroblast growth factor, (bFGF), tumor necrosis factor alpha (TNF-α), anisomycin, tetradecanoyl phorbol acetate (TPA), and UV radiation as secondary stimuli, was found to be extremely specific both with respect to the secondary stimuli and at the level of individual genes. Further, we show that anisomycin-induced homologous desensitization is caused by the fact that anisomycin no longer activates the JNK/SAPK and p38/RK MAP kinase cascades in desensitized cells. In anisomycin-desensitized cells, activation of JNK/SAPKs by UV radiation and hyperosmolarity is almost completely lost, and that of the p38/RK cascade is reduced to about 50% of the normal response. However, all other stimuli produced normal or augmented activation of these two kinase cascades in anisomycin-desensitized cells. These data show that anisomycin behaves like a true signalling agonist and suggest that the anisomycin-desensitized signalling component(s) is not involved in JNK/SAPK or p38/RK activation by EGF, bFGF, TNF-α, or TPA but may play a significant role in UV- and hyperosmolarity-stimulated responses.  相似文献   
15.
16.
Electroselection processes of charge recombination are manifested in the study of electric field induced polarized emission from photosynthetic membrane vesicles. The study explores the coupled spatial-temporal characteristics of electric field induced charge recombination by examining the dependence of the integrated polarized emission and the time dependent polarization on electric field strength. The experimental results were fitted to theoretical models by computer simulations employing empirical parameters. Simulation of the dependence of the integrated polarized components of emission on electric field strength, suggests field-dependent increased ratio between radiative and nonradiative rates of charge recombination. The observation that the initial polarization values are independent of electric field strength supports the assumption that electric field induced emission originates from the pole area and then spreads away from it towards the equator. The propagation rate of this electric field induced charge recombination from the pole area towards the equator is reflected by the decay of polarization which increases upon raising the electric field strength. Simulation of the polarization's decay, based on a calculated angle of 26.3 ± 0.4° between the transition moment of emission and the plane of the membrane, establishes coupled temporal spatial patterns of electroselection in intramembrane electron transfer invoked by exposing preilluminated photosynthetic vesicles to a homogeneous electric field.  相似文献   
17.

Background

Well differentiated papillary mesothelioma of the peritoneum (WDPMP) is a rare variant of epithelial mesothelioma of low malignancy potential, usually found in women with no history of asbestos exposure. In this study, we perform the first exome sequencing of WDPMP.

Results

WDPMP exome sequencing reveals the first somatic mutation of E2F1, R166H, to be identified in human cancer. The location is in the evolutionarily conserved DNA binding domain and computationally predicted to be mutated in the critical contact point between E2F1 and its DNA target. We show that the R166H mutation abrogates E2F1's DNA binding ability and is associated with reduced activation of E2F1 downstream target genes. Mutant E2F1 proteins are also observed in higher quantities when compared with wild-type E2F1 protein levels and the mutant protein's resistance to degradation was found to be the cause of its accumulation within mutant over-expressing cells. Cells over-expressing wild-type E2F1 show decreased proliferation compared to mutant over-expressing cells, but cell proliferation rates of mutant over-expressing cells were comparable to cells over-expressing the empty vector.

Conclusions

The R166H mutation in E2F1 is shown to have a deleterious effect on its DNA binding ability as well as increasing its stability and subsequent accumulation in R166H mutant cells. Based on the results, two compatible theories can be formed: R166H mutation appears to allow for protein over-expression while minimizing the apoptotic consequence and the R166H mutation may behave similarly to SV40 large T antigen, inhibiting tumor suppressive functions of retinoblastoma protein 1.  相似文献   
18.

Background

The development of plasma biomarkers could facilitate early detection, risk assessment and therapeutic monitoring in Alzheimer''s disease (AD). Alterations in ceramides and sphingomyelins have been postulated to play a role in amyloidogensis and inflammatory stress related neuronal apoptosis; however few studies have conducted a comprehensive analysis of the sphingolipidome in AD plasma using analytical platforms with accuracy, sensitivity and reproducibility.

Methods and Findings

We prospectively analyzed plasma from 26 AD patients (mean MMSE 21) and 26 cognitively normal controls in a non-targeted approach using multi-dimensional mass spectrometry-based shotgun lipidomics [1], [2] to determine the levels of over 800 molecular species of lipids. These data were then correlated with diagnosis, apolipoprotein E4 genotype and cognitive performance. Plasma levels of species of sphingolipids were significantly altered in AD. Of the 33 sphingomyelin species tested, 8 molecular species, particularly those containing long aliphatic chains such as 22 and 24 carbon atoms, were significantly lower (p<0.05) in AD compared to controls. Levels of 2 ceramide species (N16:0 and N21:0) were significantly higher in AD (p<0.05) with a similar, but weaker, trend for 5 other species. Ratios of ceramide to sphingomyelin species containing identical fatty acyl chains differed significantly between AD patients and controls. MMSE scores were correlated with altered mass levels of both N20:2 SM and OH-N25:0 ceramides (p<0.004) though lipid abnormalities were observed in mild and moderate AD. Within AD subjects, there were also genotype specific differences.

Conclusions

In this prospective study, we used a sensitive multimodality platform to identify and characterize an essentially uniform but opposite pattern of disruption in sphingomyelin and ceramide mass levels in AD plasma. Given the role of brain sphingolipids in neuronal function, our findings provide new insights into the AD sphingolipidome and the potential use of metabolomic signatures as peripheral biomarkers.  相似文献   
19.
20.
BACKGROUND: The etiology of neural tube defects (NTDs) is multifactorial, with environmental and genetic determinants. Folate supplementation prevents the majority of NTDs, and a polymorphism in methylenetetrahydrofolate reductase (MTHFR) has become recognized as a genetic risk factor. The mechanisms by which folate affects NTD development are unclear. The Splotch (Sp) mouse is a well-characterized mouse model for studying spontaneous NTDs. To assess the potential interaction between folate metabolism and the Sp mutant in NTD development, we studied mice with both Sp and Mthfr mutations, as well as the interaction between Sp and low dietary folate. METHODS: Wild-type, single Mthfr+/-mutant, single Sp/+mutant, and double mutant (Mthfr+/-, Sp/+) female mice were mated with males of the same genotype. Embryos were examined for NTDs on gestational day (GD) 13.5. To investigate the effects of folate deficiency on Sp mice, Sp/+female mice were fed a control diet (CD), a moderately folic acid-deficient diet (MFADD), or a severely folic acid-deficient diet (SFADD). They were mated with Sp/+males and the embryos were examined. RESULTS: There were no differences in the incidence or severity of NTDs in embryos from double-mutant mating pairs compared to those from single Sp mutants. Embryos from Mthfr+/-dams did not exhibit NTDs. Diets deficient in folate did not influence the incidence or severity of NTDs in embryos from Sp/+mice. CONCLUSIONS: We did not observe an interaction between Sp and Mthfr mutations, or between the Sp mutation and low dietary folate, in NTD development in Splotch mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号