首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   6篇
  2022年   1篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2008年   1篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有54条查询结果,搜索用时 187 毫秒
41.
42.
Testing lack of fit in multiple regression   总被引:2,自引:0,他引:2  
Aerts  M; Claeskens  G; Hart  JD 《Biometrika》2000,87(2):405-424
  相似文献   
43.
Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc) and Caudate Putamen (CP), regions of the brain known to be involved in the behavioral responses to drugs of abuse. Moreover, we wanted to explore the mechanism by which these genes are regulated following cocaine exposure. Here we find that after repeated cocaine exposure, expression of the Period (Per) genes and Neuronal PAS Domain Protein 2 (Npas2) are elevated, in a somewhat regionally selective fashion. Moreover, NPAS2 (but not CLOCK (Circadian Locomotor Output Cycles Kaput)) protein binding at Per gene promoters was enhanced following cocaine treatment. Mice lacking a functional Npas2 gene failed to exhibit any induction of Per gene expression after cocaine, suggesting that NPAS2 is necessary for this cocaine-induced regulation. Examination of Per gene and Npas2 expression over twenty-four hours identified changes in diurnal rhythmicity of these genes following chronic cocaine, which were regionally specific. Taken together, these studies point to selective disruptions in Per gene rhythmicity in striatial regions following chronic cocaine treatment, which are mediated primarily by NPAS2.  相似文献   
44.
T cell activation involves a cascade of TCR-mediated signals that are regulated by three distinct intracellular signaling motifs located within the cytoplasmic tails of the CD3 chains. Whereas all the CD3 subunits possess at least one ITAM, the CD3 ε subunit also contains a proline-rich sequence and a basic-rich stretch (BRS). The CD3 ε BRS complexes selected phosphoinositides, interactions that are required for normal cell surface expression of the TCR. The cytoplasmic domain of CD3 ζ also contains several clusters of arginine and lysine residues. In this study, we report that these basic amino acids enable CD3 ζ to complex the phosphoinositides PtdIns(3)P, PtdIns(4)P, PtdIns(5)P, PtdIns(3,5)P(2), and PtdIns(3,4,5)P(3) with high affinity. Early TCR signaling pathways were unaffected by the targeted loss of the phosphoinositide-binding functions of CD3 ζ. Instead, the elimination of the phosphoinositide-binding function of CD3 ζ significantly impaired the ability of this invariant chain to accumulate stably at the immunological synapse during T cell-APC interactions. Without its phosphoinositide-binding functions, CD3 ζ was concentrated in intracellular structures after T cell activation. Such findings demonstrate a novel functional role for CD3 ζ BRS-phosphoinositide interactions in supporting T cell activation.  相似文献   
45.
Mycobacterial shuttle vectors contain dual origins of replication for growth in both Escherichia coli and mycobacteria. One such vector, pSUM36, was re-engineered for high-level protein expression in diverse bacterial species. The modified vector (pSUM-kan-MCS2) enabled green fluorescent protein expression in E. coli, Mycobacterium smegmatis, and M. avium at levels up to 50-fold higher than that detected with the parental vector, which was originally developed with a lacZα promoter. This high-level fluorescent protein expression allowed easy visualization of M. smegmatis and M. avium in infected macrophages. The M. tuberculosis gene esat-6 was cloned in place of the green fluorescence protein gene (gfp) to determine the impact of ESAT-6 on the innate inflammatory response. The modified vector (pSUM-kan-MCS2) yielded high levels of ESAT-6 expression in M. smegmatis. The ability of ESAT-6 to suppress innate inflammatory pathways was assayed with a novel macrophage reporter cell line, designed with an interleukin-6 (IL-6) promoter-driven GFP cassette. This stable cell line fluoresces in response to diverse mycobacterial strains and stimuli, such as lipopolysaccharide. M. smegmatis clones expressing high levels of ESAT-6 failed to attenuate IL-6-driven GFP expression. Pure ESAT-6, produced in E. coli, was insufficient to suppress a strong inflammatory response elicited by M. smegmatis or lipopolysaccharide, with ESAT-6 itself directly activating the IL-6 pathway. In summary, a pSUM-protein expression vector and a mammalian IL-6 reporter cell line provide new tools for understanding the pathogenic mechanisms deployed by various mycobacterial species.  相似文献   
46.
Pre-mRNA splicing is catalyzed by the large ribonucleoprotein spliceosome. Spliceosome assembly is a highly dynamic process in which the complex transitions through a number of intermediates. Recently, the potent anti-tumor compound Spliceostatin A (SSA) was shown to inhibit splicing and to interact with an essential component of the spliceosome, SF3b. However, it was unclear whether SSA directly impacts the spliceosome and, if so, by what mechanism, which limits interpretation of the drugs influence on splicing. Here, we report that SSA inhibits pre-mRNA splicing by interfering with the spliceosome subsequent to U2 snRNP addition. We demonstrate that SSA inhibition of spliceosome assembly requires ATP, key pre-mRNA splicing sequences and intact U1 and U2 snRNAs. Furthermore all five U snRNAs in addition to the SSA molecule associate with pre-mRNA during SSA inhibition. Kinetic analyses reveal that SSA impedes the A to B complex transition. Remarkably, our data imply that, in addition to its established function in early U2 snRNP recruitment, SF3b plays a role in later maturation of spliceosomes. This work establishes SSA as a powerful tool for dissecting the dynamics of spliceosomes in cells. In addition our data will inform the design of synthetic splicing modulator compounds for targeted anti-tumor treatment.  相似文献   
47.
A new membrane filter agar medium (MI agar) containing a chromogen, indoxyl-beta-D-glucuronide, and a fluorogen, 4-methylumbelliferyl-beta-D-galactopyranoside, was developed to simultaneously detect and enumerate Escherichia coli and total coliforms (TC) in water samples on the basis of their enzyme activities. TC produced beta-galactosidase, which cleaved 4-methylumbelliferyl-beta-D-galactopyranoside to form 4-methylumbelliferone, a compound that fluoresced under longwave UV light (366 nm), while E. coli produced beta-glucuronidase, which cleaved indoxyl-beta-D-glucuronide to form a blue color. The new medium TC and E. coli recoveries were compared with those of mEndo agar and two E. coli media, mTEC agar and nutrient agar supplemented with 4-methylumbelliferyl-beta-D-glucuronide, using natural water samples and spiked drinking water samples. On average, the new medium recovered 1.8 times as many TC as mEndo agar, with greatly reduced background counts (< or = 7%). These differences were statistically significant (significance level, 0.05). Although the overall analysis revealed no statistically significant difference between the E. coli recoveries on MI agar and mTEC agar, the new medium recovered more E. coli in 16 of 23 samples (69.6%). Both MI agar and mTEC agar recovered significantly more E. coli than nutrient agar supplemented with 4-methylumbelliferyl-beta-D-glucuronide. Specificities for E. coli, TC, and noncoliforms on MI agar were 95.7% (66 of 69 samples), 93.1% (161 of 173 samples), and 93.8% (61 of 65 samples), respectively. The E. coli false-positive and false-negative rates were both 4.3%. This selective and specific medium, which employs familiar membrane filter technology [corrected] to analyze several types of water samples, is less expensive than the liquid chromogen and fluorogen media and may be useful for compliance monitoring of drinking water.  相似文献   
48.
49.

Background  

Quantifying the amount of standing genetic variation in fitness represents an empirical challenge. Unfortunately, the shortage of detailed studies of the genetic architecture of fitness has hampered progress in several domains of evolutionary biology. One such area is the study of sexual selection. In particular, the evolution of adaptive female choice by indirect genetic benefits relies on the presence of genetic variation for fitness. Female choice by genetic benefits fall broadly into good genes (additive) models and compatibility (non-additive) models where the strength of selection is dictated by the genetic architecture of fitness. To characterize the genetic architecture of fitness, we employed a quantitative genetic design (the diallel cross) in a population of the seed beetle Callosobruchus maculatus, which is known to exhibit post-copulatory female choice. From reciprocal crosses of inbred lines, we assayed egg production, egg-to-adult survival, and lifetime offspring production of the outbred F1 daughters (F1 productivity).  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号