首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   11篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   6篇
  2018年   8篇
  2017年   5篇
  2016年   5篇
  2015年   8篇
  2014年   9篇
  2013年   16篇
  2012年   14篇
  2011年   32篇
  2010年   11篇
  2009年   12篇
  2008年   9篇
  2007年   14篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1969年   1篇
排序方式: 共有195条查询结果,搜索用时 109 毫秒
61.
Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice–water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 μg C l−1 d−1. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 μg C l−1 d−1. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r = 0.97, < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.  相似文献   
62.
63.
Pathogens or their toxins, including influenza virus, Pseudomonas, and anthrax toxins, require processing by host proprotein convertases (PCs) to enter host cells and to cause disease. Conversely, inhibiting PCs is likely to protect host cells from multiple furin-dependent, but otherwise unrelated, pathogens. To determine if this concept is correct, we designed specific nanomolar inhibitors of PCs modeled from the extended cleavage motif TPQRERRRKKR downward arrowGL of the avian influenza H5N1 hemagglutinin. We then confirmed the efficacy of the inhibitory peptides in vitro against the fluorescent peptide, anthrax protective antigen (PA83), and influenza hemagglutinin substrates and also in mice in vivo against two unrelated toxins, anthrax and Pseudomonas exotoxin. Peptides with Phe/Tyr at P1' were more selective for furin. Peptides with P1' Thr were potent against multiple PCs. Our strategy of basing the peptide sequence on a furin cleavage motif known for an avian flu virus shows the power of starting inhibitor design with a known substrate. Our results confirm that inhibiting furin-like PCs protects the host from the distinct furin-dependent infections and lay a foundation for novel, host cell-focused therapies against acute diseases.  相似文献   
64.
Proteus mirabilis is an important cause of urinary tract infection (UTI) in patients with complicated urinary tracts. Thirty-five strains of P. mirabilis isolated from UTI were examined for the adherence capacity to epithelial cells. All isolates displayed the aggregative adherence (AA) to HEp-2 cells, a phenotype similarly presented in LLC-MK(2) cells. Biofilm formation on polystyrene was also observed in all strains. The mannose-resistant Proteus-like fimbriae (MR/P), Type I fimbriae and AAF/I, II and III fimbriae of enteroaggregative Escherichia coli were searched by the presence of their respective adhesin-encoding genes. Only the MR/P fimbrial subunits encoding genes mrpA and mrpH were detected in all isolates, as well as MR/P expression. A mutation in mrpA demonstrated that MR/P is involved in aggregative adherence to HEp-2 cells, as well as in biofilm formation. However, these phenotypes are multifactorial, because the mrpA mutation reduced but did not abolish both phenotypes. The present results reinforce the importance of MR/P as a virulence factor in P. mirabilis due to its association with AA and biofilm formation, which is an important step for the establishment of UTI in catheterized patients.  相似文献   
65.
The stratum corneum is an important permeability barrier for the skin. The disorganization of the skin protective barrier characterizes some skin diseases such as psoriasis. Indeed, psoriatic skin is known to be more permeable than normal human skin. An in vitro human skin substitute may be obtained by the auto-assembly method. This method was adapted to produce psoriatic substitutes. FTIR spectroscopy is a well-established method to evaluate the order of hydrocarbon chains in terms of population of trans and gauche conformers. Using ATR-FTIR, we have compared the physicochemical properties of the stratum corneum in skin models derived from uninvolved and involved psoriatic cells with those derived from normal cells. Our results suggest that the stratum corneum of involved psoriatic skin substitutes is less organized than that of normal skin substitutes. Also, it seems that the properties of uninvolved psoriatic skin may vary with seriousness of the disease. The development of a new psoriatic skin model would be helpful in the design of new treatments and to increase the understanding of the mechanisms of this pathology.  相似文献   
66.
Escherichia coli producing heat-labile enterotoxin is responsible for numerous cases of diarrhea worldwide, leading to considerable morbidity and mortality. The B subunits of this toxin are responsible for the binding to the receptor, the complex ganglioside GM1 which has galactose as its terminal sugar. In this study we showed that analogs of galactose (gal) and N-acetylgalactosamine (GalNAc) interfere with the binding of heat-labile toxin to GM1. Antibodies to lectins which mimic sugar structures and neoglycoprotein were employed. These compounds were able to inhibit heat-labile toxin activity efficiently in Vero cells: 37 microg of IgG-enriched fraction from an antiserum inhibited up to 70% of this activity, and 50% of the binding of heat-labile toxin to GM1. Neoglycoprotein was more efficient than antibodies, since 2.5 microg of this ligand completely abolished the activity of heat-labile toxin on Vero cells. These data suggest that these molecules could be developed for prophylaxis and diagnosis of diarrhea caused by heat-labile toxin.  相似文献   
67.
Survival within macrophages is a central feature of Mycobacterium tuberculosis pathogenesis. Despite significant advances in identifying new immunological parameters associated with mycobacterial disease, some basic questions on the intracellular fate of the causative agent of human tuberculosis in antigen-presenting cells are still under debate. To get novel insights into this matter, we used a single-cell fluorescence resonance energy transfer (FRET)-based method to investigate the potential cytosolic access of M. tuberculosis and the resulting cellular consequences in an unbiased, quantitative way. Analysis of thousands of THP-1 macrophages infected with selected wild-type or mutant strains of the M. tuberculosis complex unambiguously showed that M. tuberculosis induced a change in the FRET signal after 3 to 4 days of infection, indicating phagolysosomal rupture and cytosolic access. These effects were not seen for the strains M. tuberculosisΔRD1 or BCG, both lacking the ESX-1 secreted protein ESAT-6, which reportedly shows membrane-lysing properties. Complementation of these strains with the ESX-1 secretion system of M. tuberculosis restored the ability to cause phagolysosomal rupture. In addition, control experiments with the fish pathogen Mycobacterium marinum showed phagolysosomal translocation only for ESX-1 intact strains, further validating our experimental approach. Most importantly, for M. tuberculosis as well as for M. marinum we observed that phagolysosomal rupture was followed by necrotic cell death of the infected macrophages, whereas ESX-1 deletion- or truncation-mutants that remained enclosed within phagolysosomal compartments did not induce such cytotoxicity. Hence, we provide a novel mechanism how ESX-1 competent, virulent M. tuberculosis and M. marinum strains induce host cell death and thereby escape innate host defenses and favor their spread to new cells. In this respect, our results also open new research directions in relation with the extracellular localization of M. tuberculosis inside necrotic lesions that can now be tackled from a completely new perspective.  相似文献   
68.
Rivers and estuaries transport organic carbon (C) from terrestrial and freshwater ecosystems to the marine environment. During this transit, bacteria actively utilize and transform organic C, but few studies have measured detailed spatial variation in rates of bacterial respiration (BR) and production (BP). We measured BP at 39 stations and BR at 12 stations at monthly intervals along a 200-km reach of the tidal Hudson River. We observed strong repeatable spatial patterns for both BP and BR, with rates declining in the downstream direction. Bacterial Production had much greater dynamic range of spatial variation than BR. We used the detailed seasonal and spatial data on BP and BR to measure the total C demand of bacteria at several scales. We calculated volumetric and areal rates for 12 sections of the Hudson, as well as the total C utilization. Volumetric BR averaged 20 g-C-m–3 y–1, but it was highest in the most upstream section at 30 g C m–3 y–1. Areal rates averaged over the entire river were 174 g C m–2 y–1, but they were 318 g C m–2 y–1 in the deepest section of the river, indicating the importance of morphometric variation. Total bacterial C demand increased downriver with increasing total volume. Overall, bacteria in the freshwater section of the river consumed approximately 18–25.5 × 109 g C y–1, about 20% of the total organic C load.  相似文献   
69.
We present the data and the technology, a combination of which allows us to determine the identity of proprotein convertases (PCs) related to the processing of specific protein targets including viral and bacterial pathogens. Our results, which support and extend the data of other laboratories, are required for the design of effective inhibitors of PCs because, in general, an inhibitor design starts with a specific substrate. Seven proteinases of the human PC family cleave the multibasic motifs R-X-(R/K/X)-R downward arrow and, as a result, transform proproteins, including those from pathogens, into biologically active proteins and peptides. The precise cleavage preferences of PCs have not been known in sufficient detail; hence we were unable to determine the relative importance of the individual PCs in infectious diseases, thus making the design of specific inhibitors exceedingly difficult. To determine the cleavage preferences of PCs in more detail, we evaluated the relative efficiency of furin, PC2, PC4, PC5/6, PC7, and PACE4 in cleaving over 100 decapeptide sequences representing the R-X-(R/K/X)-R downward arrow motifs of human, bacterial, and viral proteins. Our computer analysis of the data and the follow-on cleavage analysis of the selected full-length proteins corroborated our initial results thus allowing us to determine the cleavage preferences of the PCs and to suggest which PCs are promising drug targets in infectious diseases. Our results also suggest that pathogens, including anthrax PA83 and the avian influenza A H5N1 (bird flu) hemagglutinin precursor, evolved to be as sensitive to PC proteolysis as the most sensitive normal human proteins.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号