首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   18篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   7篇
  2018年   4篇
  2017年   7篇
  2016年   6篇
  2015年   9篇
  2014年   14篇
  2013年   17篇
  2012年   17篇
  2011年   9篇
  2010年   15篇
  2009年   7篇
  2008年   11篇
  2007年   10篇
  2006年   17篇
  2005年   9篇
  2004年   10篇
  2003年   4篇
  2002年   7篇
  2001年   9篇
  2000年   6篇
  1999年   10篇
  1998年   5篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1922年   1篇
排序方式: 共有255条查询结果,搜索用时 31 毫秒
21.
22.
The pathogen Salmonella Typhimurium is a common cause of diarrhea and invades the gut tissue by injecting a cocktail of virulence factors into epithelial cells, triggering actin rearrangements, membrane ruffling and pathogen entry. One of these factors is SopE, a G‐nucleotide exchange factor for the host cellular Rho GTPases Rac1 and Cdc42. How SopE mediates cellular invasion is incompletely understood. Using genome‐scale RNAi screening we identified 72 known and novel host cell proteins affecting SopE‐mediated entry. Follow‐up assays assigned these ‘hits’ to particular steps of the invasion process; i.e., binding, effector injection, membrane ruffling, membrane closure and maturation of the Salmonella‐containing vacuole. Depletion of the COPI complex revealed a unique effect on virulence factor injection and membrane ruffling. Both effects are attributable to mislocalization of cholesterol, sphingolipids, Rac1 and Cdc42 away from the plasma membrane into a large intracellular compartment. Equivalent results were obtained with the vesicular stomatitis virus. Therefore, COPI‐facilitated maintenance of lipids may represent a novel, unifying mechanism essential for a wide range of pathogens, offering opportunities for designing new drugs.  相似文献   
23.
Identified germplasm is an important component for efficient and effective management of plant genetic resources. Traditionally, cultivars or species identification has relied on morphological characters like growth habit or floral morphology like flower colour and other characteristics of the plant. Studies were undertaken for identification and analysis of genetic variation within 34 rose cultivars through random amplified polymorphic DNA (RAPD) markers. Analysis was made by using twenty five decamer primers. Out of twenty five, ten primers were selected and used for identification and analysis of genetic relationships among 34 rose cultivars. A total of 162 distinct DNA fragments ranging from 0.1 to 3.4 kb was amplified by using 10 selected random decamer primers. The genetic similarity was evaluated on the basis of presence or absence of bands. The cluster analysis indicated that the 34 rose cultivars form 9 clusters. The first cluster consists of eight hybrid cultivars, three clusters having five cultivars each, one cluster having four cultivars, two clusters having three cultivars each and two clusters having one cultivar each. The genetic distance was very close within the cultivars. Thus, these RAPD markers have the potential for identification of clusters and characterization of genetic variation within the cultivars. This is also helpful in rose breeding programs and provides a major input into conservation biology.  相似文献   
24.
25.
Many cargoes destined for nuclear import carry nuclear localization signals that are recognized by karyopherins (Kaps). We present methods to quantitate import rates and measure Kap and cargo concentrations in single yeast cells in vivo, providing new insights into import kinetics. By systematically manipulating the amounts, types, and affinities of Kaps and cargos, we show that import rates in vivo are simply governed by the concentrations of Kaps and their cargo and the affinity between them. These rates fit to a straightforward pump-leak model for the import process. Unexpectedly, we deduced that the main limiting factor for import is the poor ability of Kaps and cargos to find each other in the cytoplasm in a background of overwhelming nonspecific competition, rather than other more obvious candidates such as the nuclear pore complex and Ran. It is likely that most of every import round is taken up by Kaps and nuclear localization signals sampling other cytoplasmic proteins as they locate each other in the cytoplasm.  相似文献   
26.
Marker assisted breeding for transformability in maize   总被引:1,自引:0,他引:1  
Corn lines with improved culturability and transformability were produced using Marker Assisted Breeding (MAB) to introgress specific regions from the highly transformable hybrid, Hi-II, into the elite line, FBLL that responds very poorly in culture. FBLL is a female inbred parental stiff-stalk line that has been used to produce a series of some of DEKALB’s historically best selling hybrids. Five unlinked regions important for culturability and transformability were identified by segregation distortion analysis and introgressed into FBLL to produce the highly transformable FBLL-MAB lines. Agrobacterium mediated transformation was used to screen the FBLL-MAB lines and select the most efficient lines for transformation using immature embryo explants. Two highly efficient transformation systems were developed using kanamycin and glyphosate as selective agents. To evaluate agronomics, two testcross hybrids were produced for each of the three lead FBLL-MAB lines. A 25-location, 3-replication yield trial was used to evaluate grain yield, yield stability, and agronomic characteristics of the hybrids. Yields were found to be 2–5% lower and more stable (across a diverse set of environments) among hybrids produced with the FBLL-MAB lines as compared to the same hybrids produced with FBLL.  相似文献   
27.
Field MC  Adung'a V  Obado S  Chait BT  Rout MP 《Parasitology》2012,139(9):1158-1167
Trypanosomatids represent the causative agents of major diseases in humans, livestock and plants, with inevitable suffering and economic hardship as a result. They are also evolutionarily highly divergent organisms, and the many unique aspects of trypanosome biology provide opportunities in terms of identification of drug targets, the challenge of exploiting these putative targets and, at the same time, significant scope for exploration of novel and divergent cell biology. We can estimate from genome sequences that the degree of divergence of trypanosomes from animals and fungi is extreme, with perhaps one third to one half of predicted trypanosome proteins having no known function based on homology or recognizable protein domains/architecture. Two highly important aspects of trypanosome biology are the flagellar pocket and the nuclear envelope, where in silico analysis clearly suggests great potential divergence in the proteome. The flagellar pocket is the sole site of endo- and exocytosis in trypanosomes and plays important roles in immune evasion via variant surface glycoprotein (VSG) trafficking and providing a location for sequestration of various invariant receptors. The trypanosome nuclear envelope has been largely unexplored but, by analogy with higher eukaryotes, roles in the regulation of chromatin and most significantly, in controlling VSG gene expression are expected. Here we discuss recent successful proteomics-based approaches towards characterization of the nuclear envelope and the endocytic apparatus, the identification of conserved and novel trypanosomatid-specific features, and the implications of these findings.  相似文献   
28.

Background

Targeting conserved proteins of bacteria through antibacterial medications has resulted in both the development of resistant strains and changes to human health by destroying beneficial microbes which eventually become breeding grounds for the evolution of resistances. Despite the availability of more than 800 genomes sequences, 430 pathways, 4743 enzymes, 9257 metabolic reactions and protein (three-dimensional) 3D structures in bacteria, no pathogen-specific computational drug target identification tool has been developed.

Methods

A web server, UniDrug-Target, which combines bacterial biological information and computational methods to stringently identify pathogen-specific proteins as drug targets, has been designed. Besides predicting pathogen-specific proteins essentiality, chokepoint property, etc., three new algorithms were developed and implemented by using protein sequences, domains, structures, and metabolic reactions for construction of partial metabolic networks (PMNs), determination of conservation in critical residues, and variation analysis of residues forming similar cavities in proteins sequences. First, PMNs are constructed to determine the extent of disturbances in metabolite production by targeting a protein as drug target. Conservation of pathogen-specific protein''s critical residues involved in cavity formation and biological function determined at domain-level with low-matching sequences. Last, variation analysis of residues forming similar cavities in proteins sequences from pathogenic versus non-pathogenic bacteria and humans is performed.

Results

The server is capable of predicting drug targets for any sequenced pathogenic bacteria having fasta sequences and annotated information. The utility of UniDrug-Target server was demonstrated for Mycobacterium tuberculosis (H37Rv). The UniDrug-Target identified 265 mycobacteria pathogen-specific proteins, including 17 essential proteins which can be potential drug targets.

Conclusions/Significance

UniDrug-Target is expected to accelerate pathogen-specific drug targets identification which will increase their success and durability as drugs developed against them have less chance to develop resistances and adverse impact on environment. The server is freely available at http://117.211.115.67/UDT/main.html. The standalone application (source codes) is available at http://www.bioinformatics.org/ftp/pub/bioinfojuit/UDT.rar.  相似文献   
29.
Sheean P  Rout MK  Head RJ  Bennett LE 《The FEBS journal》2012,279(7):1291-1305
The in vitro activity of human recombinant β-secretase (BACE1) was studied using a fluorogenic substrate based on the cleavage site for the enzyme in the Swedish mutation of amyloid precursor protein. The enzyme was inhibited by a control peptide inhibitor with good repeatability. The enzyme preparation comprised a mixture of pro-enzyme or zymogen and mature enzyme whereby the pro-enzyme sequence forms a 'flap' that can obstruct the binding site. 'Open flap' forms of the zymogen and mature enzyme are active, but the 'closed flap' form of the zymogen is inactive. This mixture of enzyme populations permitted apparent stimulation of enzyme activity under particular conditions, presumably due to facilitating flap-opening of the zymogen. As reported for heparin, enzyme activation was stimulated in the presence of low concentrations of Tween 20 and dimethylsulfoxide before becoming inhibited at higher concentrations. Dietary plant extracts either consistently inhibited (e.g. clove, tea, cinammon) or consistently stimulated (e.g. mushroom, parsley, asparagus) BACE1. Common structural features identified by Fourier transform infrared spectroscopy revealed that BACE1 activity could be explained by differential interactions of either small molecule or polymeric species with mature versus zymogen forms of the enzyme, respectively. Further, enzyme activity could be reversed by mixtures of high and low mass species. These results may have implications for the regulation of β-secretase activity in vivo by either endogenous or possibly dietary factors and for a potential role of BACE1 in stimulation of the production of amyloid beta peptide in sporadic Alzheimer's disease.  相似文献   
30.
A water-insoluble glucan, PFPSIN, has been isolated from the aqueous extract of an edible mushroom Pleurotus florida. On the basis of total acid hydrolysis, methylation analysis, periodate oxidation, Smith degradation, and (13)C NMR experiments, the repeating unit of the polysaccharide was established as Conformational analysis revealed the triple helical conformation of this glucan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号