首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   18篇
  2023年   2篇
  2022年   10篇
  2021年   8篇
  2020年   10篇
  2019年   19篇
  2018年   16篇
  2017年   7篇
  2016年   15篇
  2015年   13篇
  2014年   9篇
  2013年   15篇
  2012年   15篇
  2011年   8篇
  2010年   12篇
  2009年   10篇
  2008年   5篇
  2007年   10篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有227条查询结果,搜索用时 46 毫秒
111.
The oxygen reduction reaction (ORR) is of great importance in energy‐converting processes such as fuel cells and in metal–air batteries and is vital to facilitate the transition toward a nonfossil dependent society. The ORR has been associated with expensive noble metal catalysts that facilitate the O2 adsorption, dissociation, and subsequent electron transfer. Single‐ or few‐atom motifs based on earth‐abundant transition metals, such as Fe, Co, and Mo, combined with nonmetallic elements, such as P, S, and N, embedded in a carbon‐based matrix represent one of the most promising alternatives. Often these are referred to as single atom catalysts; however, the coordination number of the metal atom as well as the type and nearest neighbor configuration has a strong influence on the function of the active sites, and a more adequate term to describe them is metal‐coordinated motifs. Despite intense research, their function and catalytic mechanism still puzzle researchers. They are not molecular systems with discrete energy states; neither can they fully be described by theories that are adapted for heterogeneous bulk catalysts. Here, recent results on single‐ and few‐atom electrocatalyst motifs are reviewed with an emphasis on reports discussing the function and the mechanism of the active sites.  相似文献   
112.

Strigolactone (SL) and methyl jasmonate (MeJA) are one of the most important plant hormones that exert biological activity in plant responses to environmental stresses. Considering the undetected role of SL in drought tolerance and essential oil yield of medicinal plants as well as conceivable interaction among MeJA and SL, a factorial experiment was performed as a complete randomized design with three replications. Experimental factors including two irrigation regimes such as irrigation to 80% field capacity (control) and 40% field capacity (drought stress) and spraying treatments include MeJA (0 and 0.5 mM) and SL (0 and 10 μM) were applied. Treatment of plants with SL and MeJA resulted in higher tolerance to drought stress due to higher fresh and dry weights as well as lower electrolyte leakage, malondialdehyde, H2O2, total phenol content, total antioxidant activity and antioxidant power assay. The most important essential oil constituents of D. kotschyi included geranyl acetate (41.1–48.6%), α-pinene (16.2–18.9%), geranial (7.9–10.1%), limonene (5.5–7.0%), neral (3.5–4.1%), methyl geranate (2.3–3.3%) and geraniol (1–2.2%), the least of which was found in non-MeJA- and SL-treated plants under drought and the highest in MeJA- and SL-treated plants under drought stress. Drought tolerance of D. kotschyi became more intense and the amount of essential oil components of water stressed plants was the highest (99.2%) when these plant hormones were used together. These results suggest a cross-link between MeJA and SL in improving drought resistance and optimizing the production of essential oil of D. kotschyi.

  相似文献   
113.
Carvacrol is a major component of Satureja khuzistanica Jamzad (≤90%) that has significant antimicrobial and antioxidant properties. Considering the specific capabilities of S. khuzistanica to produce highly pure carvacrol, this plant is an important potential source of carvacrol that could address the abundant consumption and increasing demand for this monoterpene in current world markets. This research was performed to better understand the process of biosynthesis and accumulation of carvacrol in S. khuzistanica. Tests were performed on shoot cultures of S. khuzistanica in Linsmaier-Skoog (LS) medium treated with different concentrations of fosmidomycin (an inhibitor of the non-mevalonate pathway) and mevinolin (an inhibitor of the mevalonate pathway) for 21 days at the following concentrations: 0, 10, 25, 50, 75 and 100 μM. The present study demonstrated that the MEP pathway is the major pathway that provides IPP for the biosynthesis of carvacrol, and the expression and activity levels of the DXR enzyme have a critical effect on carvacrol biosynthesis. Surprisingly, Mevinolin at concentrations of 75 and 100 μM increased the carvacrol content and the DXR activity and gene expression in S. khuzistanica plantlets.  相似文献   
114.
Adenosine diphosphate (ADP)‐ribosylation is a post‐translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP‐ribosylation reactions are the poly(ADP‐ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP‐ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP‐ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP‐ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP‐interacting protein that removes mono(ADP‐ribosyl)ation on glutamate amino acid residues in PARP‐modified proteins. X‐ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl‐(ADP‐ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP‐ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans.  相似文献   
115.
116.

Background

In breeding programs for layers, selection of hens and cocks is based on recording phenotypic data from hens in different housing systems. Genomic information can provide additional information for selection and/or allow for a strong reduction in the generation interval. In this study, a typical conventional layer breeding program using a four-line cross was modeled and the expected genetic progress was derived deterministically with the software ZPLAN+. This non-genomic reference scenario was compared to two genomic breeding programs to determine the best strategy for implementing genomic information in layer breeding programs.

Results

In scenario I, genomic information was used in addition to all other information available in the conventional breeding program, so the generation interval was the same as in the reference scenario, i.e. 14.5 months. Here, we assumed that either only young cocks or young cocks and hens were genotyped as selection candidates. In scenario II, we assumed that breeders of both sexes were used at the biologically earliest possible age, so that at the time of selection only performance data of the parent generation and genomic information of the selection candidates were available. In this case, the generation interval was reduced to eight months. In both scenarios, the number of genotyped male selection candidates was varied between 800 and 4800 males and two sizes of the calibration set (500 or 2000 animals) were considered. All genomic scenarios increased the expected genetic gain and the economic profit of the breeding program. In scenario II, the increase was much more pronounced and even in the most conservative implementation led to a 60% improvement in genetic gain and economic profit. This increase was in all cases associated with higher breeding costs.

Conclusions

While genomic selection is shown to have the potential to improve genetic gain in layer breeding programs, its implementation remains a business decision of the breeding company; the possible extra profit for the breeding company depends on whether the customers of breeding stock are willing to pay more for improved genetic quality.  相似文献   
117.
Abstract

Studies on the anti-cancer effects of nanomaterials are a very important step in the clinical practice and treatment of cancerous tissues. Since IONPs have a high potential for cancer treatment, their anti-cancer properties can help us to resolve some of the therapeutic problems. For this purpose, in addition to synthesizing two types of IONPs including MN and MHN, Lf coating was used to increase their anti-cancer activity. MN and MHN were synthesized by hydrothermal and thermal methods, respectively, and their physicochemical properties were examined by SEM, zeta-potential, DLS, FTIR, TGA, and magnetism saturation. Molecular modelling was also done to model two steps of functionalization on the IONPs surface. In order to prove the biological activity of fabricated NPs in vitro, experimental assays of NP cytotoxicity were performed on breast cancerous cells (4T1) by MTT and ROS assays. It was found that the MN and MHN have a diameter around 24 and 33?nm, respectively. Also, the hydrodynamic radius of MN and MHN coated with Lf were 30 and 38?nm, and their zeta potential values at pH = 7.5 were ?5.3 and ?4.2?mV, respectively. Besides, the results of TGA, magnetism saturation and FTIR showed that Lf was successfully loaded onto NPs. Molecular modelling investigation depicted that dimethylamine moiety of the linker provides an intense reactive region for non-bonding linkages with Lf molecules. Cellular studies exhibited that Lf increased the toxicity of NPs and synthesized Lf-MNs provide the highest potency both on mortality and ROS level. This research may provide promising data for development of potential anticancer agents.

Communicated by Ramaswamy H. Sarma  相似文献   
118.
Linum album accumulates anti-tumor podophyllotoxin (PTOX) and its related lignans, which were originally isolated from an endangered species Podophyllum. In the present study, we examined the effects of five fungal extracts on the production of lignans in L. album cell cultures. Fusarium graminearum extract induced the highest increase of PTOX [143 μg g−1 dry weight (DW) of the L. album cell culture], while Rhizopus stolonifer extract enhanced the accumulation of lariciresinol up to 364 μg g−1 DW, instead of PTOX. Typical elicitors, such as chitin, chitosan, or methyl jasmonate (MeJA), were shown to be less effective in lignan production in L. album cell cultures. These results verified the advantages of fungal extracts to increase lignan production in L. album cell culture, and suggested potential on-demand metabolic engineering of lignan biosynthesis using differential fungal extracts.  相似文献   
119.
Sharifi N  Auchus RJ 《Steroids》2012,77(7):719-726
The pathways of androgen biosynthesis in human beings have been studied for decades, and the major pathways and enzymes responsible for testosterone and dihydrotestosterone synthesis are now well described. Minor or alternate pathways, which might contribute substantially to androgen production in specific states, have also emerged. Likewise, the requirement of androgen for prostate formation and growth date back over a half-century, and the dependence of prostate cancer on androgens has been known and exploited for as long. Despite the success of testicular removal or suppression, androgen receptor antagonists, and androgen synthesis inhibitors in the treatment of prostate cancer, the sources of androgen, their routes of synthesis, and the contributions of various routes remain topics of debate, particularly in castration-resistant disease when circulating androgens are very low. Here we review the major pathways of 19-carbon steroid synthesis in the adrenal and gonad, peripheral pathways to active androgens, and recent data charting flux of androgen precursors in prostate cancer. We are far from a unified understanding of androgen generation in prostate cancer, but the similarities and differences from glandular androgen synthesis that have already emerged provide important clues to designing the next generation of treatments for this common and devastating disease.  相似文献   
120.
Here, we report a structure-based virtual screening of the ZINC database (containing about five million compounds) by computational docking and the analysis of docking energy calculations followed by in vitro screening against H. pylori urease enzyme. One of the compounds selected showed urease inhibition in the low micromolar range. Barbituric acid and compounds 1a, 1d, 1e, 1f, 1g, 1h were found to be more potent urease inhibitors than the standard inhibitor hydroxyurea, yielding IC(50) values of 41.6, 83.3, 66.6, 50, 58.8, and 60 μM, respectively (IC(50) of hydroxyurea = 100 μM). 5-Benzylidene barbituric acid has enhanced biological activities compared to barbituric acid. Furthermore, the results indicated that among the substituted 5-benzylidene barbiturates, those with para substitution have higher urease inhibitor activities. This may be because the barbituric acid moiety is closer to the bimetallic nickel center in unsubstituted or para-substituted than in ortho- or meta-substituted analogs, so it has greater chelating ability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号