首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   21篇
  350篇
  2022年   6篇
  2021年   8篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   19篇
  2014年   23篇
  2013年   30篇
  2012年   31篇
  2011年   37篇
  2010年   18篇
  2009年   15篇
  2008年   18篇
  2007年   14篇
  2006年   26篇
  2005年   18篇
  2004年   14篇
  2003年   18篇
  2002年   15篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1979年   1篇
排序方式: 共有350条查询结果,搜索用时 0 毫秒
341.
In natural 1,3-propanediol (PDO) producing microorganisms such as Klebsiella pneumoniae, Citrobacter freundii and Clostridium sp., the genes coding for PDO producing enzymes are grouped in a dha cluster. This article describes the dha cluster of a novel candidate for PDO production, Citrobacter werkmanii DSM17579 and compares the cluster to the currently known PDO clusters of Enterobacteriaceae and Clostridiaceae. Moreover, we attribute a putative function to two previously unannotated ORFs, OrfW and OrfY, both in C. freundii and in C. werkmanii: both proteins might form a complex and support the glycerol dehydratase by converting cob(I)alamin to the glycerol dehydratase cofactor coenzyme B12. Unraveling this biosynthesis cluster revealed high homology between the deduced amino acid sequence of the open reading frames of C. werkmanii DSM17579 and those of C. freundii DSM30040 and K. pneumoniae MGH78578, i.e., 96 and 87.5 % identity, respectively. On the other hand, major differences between the clusters have also been discovered. For example, only one dihydroxyacetone kinase (DHAK) is present in the dha cluster of C. werkmanii DSM17579, while two DHAK enzymes are present in the cluster of K. pneumoniae MGH78578 and Clostridium butyricum VPI1718.  相似文献   
342.
The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use.  相似文献   
343.
344.
The monitoring of different types of pollutants that are released into the environment and that present risks for both humans and wildlife has become increasingly important. In this study, we examined whether feathers of predatory birds can be used as a non-destructive biomonitor of organic pollutants. We demonstrate that polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and polybrominated diphenyl ethers (PBDEs) are measurable in one single tail feather of common buzzards (Buteo buteo) and that levels in this feather and internal tissues are significantly related to each other (0.35 < r < 0.76 for all 43 buzzards; 0.46 < r < 0.84 when excluding 17 starved birds). Our findings provide the first indication that feathers of predatory birds could be useful in non-destructive biomonitoring of organic pollutants, although further validation may be necessary.  相似文献   
345.
Folates and Folic Acid: From Fundamental Research Toward Sustainable Health   总被引:1,自引:0,他引:1  
Folates are of paramount importance in one-carbon metabolism of most organisms. Plants and microorganisms are able to synthesize folates de novo, making them the main dietary source for humans and animals, which are dependent on food or feed supplies for folates. Folate deficiency is an increasing problem in the developing, as well as in the developed regions of the world, affecting millions of people. Different strategies, such as food fortification and folic acid supplementation, remain far from accessible for the poor rural populations in developing countries. Increasing knowledge concerning folate biosynthesis, transport and catabolism does not only deepen our insight on the regulation of folate metabolism but also provides the keys towards folate enhancement through metabolic engineering in bacteria, as well as in plants. Recently, promising results were obtained using such an approach, but further fundamental research is a prerequisite to develop a practicable solution to fight folate deficiency. In parallel, progress in the development and improvement of folate analysis has been made. Here, we provide the state-of-the-art of folate biosynthesis, catabolism, and salvage. Finally, we report on progress in folate biofortification and discuss the agroeconomical aspect of biofortified crop plants.  相似文献   
346.
Presenilin-1 is a polytopic membrane protein that assembles with nicastrin, PEN-2, and APH-1 into an active gamma-secretase complex required for intramembrane proteolysis of type I transmembrane proteins. Although essential for a correct understanding of structure-function relationships, its exact topology remains an issue of strong controversy. We revisited presenilin-1 topology by inserting glycosylation consensus sequences in human PS1 and expressing the obtained mutants in a presenilin-1 and 2 knock-out background. Based on the glycosylation status of these variants we provide evidence that presenilin-1 traffics through the Golgi after a conformational change induced by complex assembly. Based on our glycosylation variants of presenilin-1 we hypothesize that complex assembly occurs during transport between the endoplasmic reticulum and the Golgi apparatus. Furthermore, our data indicate that presenilin-1 has a nine-transmembrane domain topology with the COOH terminus exposed to the lumen/extracellular surface. This topology is independently underscored by lysine mutagenesis, cell surface biotinylation, and cysteine derivation strategies and is compatible with the different physiological functions assigned to presenilin-1.  相似文献   
347.
348.
Sequencing the glnA genes of two chemically induced Azospirillum brasilense glutamine synthetase mutants revealed an Arg→Cys mutation, corresponding to the glutamate binding site, in one mutant and an Asp→Asn mutation, corresponding to the ammonium binding site, in the second mutant. The phenotypic changes in these mutants are discussed in relation to their genotypes.  相似文献   
349.
Use of surface electromyography to estimate neck muscle activity   总被引:5,自引:0,他引:5  
This paper reviews the literature concerning the use of surface electromyography (sEMG) for the study of the neck musculature in response to work and workplace design during light work and semi-static tasks. The paper also draws upon basic research and biomechanical modeling in order to provide methodological recommendations for the use of surface electromyography in this region of the body and to identify areas which require further investigation. The paper includes review and discussion of electrode site location, methods of normalization, data reliability, and factors that can affect sEMG signals from this region, including noise, physiologic artifact, stress, visual deficiencies, and pain. General guidance for maximum exertions with the neck musculature, for sEMG normalization or other purposes, is also included.  相似文献   
350.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号