首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   15篇
  2022年   4篇
  2021年   2篇
  2020年   4篇
  2016年   4篇
  2015年   2篇
  2014年   10篇
  2013年   10篇
  2012年   10篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   10篇
  2007年   9篇
  2006年   8篇
  2005年   11篇
  2004年   7篇
  2003年   16篇
  2002年   9篇
  2001年   4篇
  2000年   9篇
  1999年   9篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1992年   2篇
  1991年   8篇
  1990年   10篇
  1989年   17篇
  1988年   4篇
  1987年   6篇
  1986年   7篇
  1985年   11篇
  1984年   12篇
  1983年   8篇
  1982年   6篇
  1981年   7篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1973年   10篇
  1972年   5篇
  1967年   3篇
  1964年   3篇
  1963年   2篇
  1956年   1篇
  1949年   1篇
排序方式: 共有332条查询结果,搜索用时 15 毫秒
41.
Human swallowing involves the integration of sensorimotor information with complexities such as taste; however, the interaction between the taste of food and its effects on swallowing control remains unknown. We assessed the effects of pleasant (sweet) and aversive (bitter) tastes on human cortical swallowing motor pathway excitability. Healthy adult male volunteers underwent a transcranial magnetic stimulation (TMS) mapping study (n = 9, mean age: 34 yr) to assess corticobulbar excitability before and up to 60 min after 10-min liquid infusions either 1) as swallowing tasks or 2) delivered directly into the stomach. Infusions were composed of sterile water (neutral), 10% glucose (sweet), and 0.5 mM quinine hydrochloride (bitter). The order of delivery was randomized, and each infusion was given on separate days. Pharyngeal motor-evoked potentials (PMEPs) were recorded from an intraluminal catheter as a measure of corticobulbar excitability and compared using repeated-measures and one-way ANOVA. After the swallowing task (water, glucose, or quinine), repeated-measures ANOVA revealed a significant time interaction across tastants (P 相似文献   
42.
Mismatch repair (MMR) corrects replication errors such as mismatched bases and loops in DNA. The evolutionarily conserved dimeric MMR protein MutS recognizes mismatches by stacking a phenylalanine of one subunit against one base of the mismatched pair. In all crystal structures of G:T mismatch-bound MutS, phenylalanine is stacked against thymine. To explore whether these structures reflect directional mismatch recognition by MutS, we monitored the orientation of Escherichia coli MutS binding to mismatches by FRET and anisotropy with steady state, pre-steady state and single-molecule multiparameter fluorescence measurements in a solution. The results confirm that specifically bound MutS bends DNA at the mismatch. We found additional MutS-mismatch complexes with distinct conformations that may have functional relevance in MMR. The analysis of individual binding events reveal significant bias in MutS orientation on asymmetric mismatches (G:T versus T:G, A:C versus C:A), but not on symmetric mismatches (G:G). When MutS is blocked from binding a mismatch in the preferred orientation by positioning asymmetric mismatches near the ends of linear DNA substrates, its ability to authorize subsequent steps of MMR, such as MutH endonuclease activation, is almost abolished. These findings shed light on prerequisites for MutS interactions with other MMR proteins for repairing the appropriate DNA strand.  相似文献   
43.
? Premise of the study: Seed cone morphology and anatomy reflect some of the most important changes in the phylogeny and evolutionary biology of conifers. Reexamination of the enigmatic Jurassic seed cone Pararaucaria patagonica reveals previously unknown systematically informative characters that demonstrate affinities with the Cheirolepidiaceae. This paper documents, for the first time, internal anatomy for seed cones of this important extinct Mesozoic conifer family, which may represent the ghost lineage leading to modern Pinaceae. ? Methods: Morphology and anatomy of cones from the Jurassic La Matilde Formation in Patagonia are described from a combination of polished wafers and thin section preparations. New photographic techniques are employed to reveal histological details of thin sections in which organic cell wall remains are not preserved. Specific terminology for conifer seed cones is proposed to help clarify hypotheses of homology for the various structures of the cones. ? Key results: Specimens are demonstrated to have trilobed ovuliferous scale tips along with a seed enclosing pocket of ovuliferous scale tissue. Originally thought to represent a seed wing in P. patagonica, this pocket-forming tissue is comparable to the flap of tissue covering seeds of compressed cheirolepidiaceous cones and is probably the most diagnostic character for seed cones of the family. ? Conclusions: Pararaucaria patagonica is assigned to Cheirolepidiaceae, documenting anatomical features for seed cones of the family and providing evidence for the antiquity of pinoid conifers leading to the origin of Pinaceae. A list of key morphological and anatomical characters for seed cones of Cheirolepidiaceae is developed to facilitate assignment of a much broader range of fossil remains to the family. This confirms the presence of Cheirolepidiaceae in the Jurassic of the Southern Hemisphere, which was previously suspected from palynological records.  相似文献   
44.
45.
46.
Insulin resistance plays a central role in type 2 diabetes and obesity, which develop as a consequence of genetic and environmental factors. Dietary changes including high fat diet (HFD) feeding promotes insulin resistance in rodent models which present useful systems for studying interactions between genetic background and environmental influences contributing to disease susceptibility and progression. We applied a combination of classical physiological, biochemical and hormonal studies and plasma (1)H NMR spectroscopy-based metabonomics to characterize the phenotypic and metabotypic consequences of HFD (40%) feeding in inbred mouse strains (C57BL/6, 129S6, BALB/c, DBA/2, C3H) frequently used in genetic studies. We showed the wide range of phenotypic and metabonomic adaptations to HFD across the five strains and the increased nutrigenomic predisposition of 129S6 and C57BL/6 to insulin resistance and obesity relative to the other strains. In contrast mice of the BALB/c and DBA/2 strains showed relative resistance to HFD-induced glucose intolerance and obesity. Hierarchical metabonomic clustering derived from (1)H NMR spectral data of the strains provided a phylometabonomic classification of strain-specific metabolic features and differential responses to HFD which closely match SNP-based phylogenetic relationships between strains. Our results support the concept of genomic clustering of functionally related genes and provide important information for defining biological markers predicting spontaneous susceptibility to insulin resistance and pathological adaptations to fat feeding.  相似文献   
47.
The first fossil evidence for the fern genus Todea has been recovered from the Lower Cretaceous of British Columbia, Canada, providing paleontological data to strengthen hypotheses regarding patterns of evolution and phylogeny within Osmundaceae. The fossil consists of a branching rhizome, adventitious roots, and leaf bases. The dictyoxylic stem has up to eight xylem bundles around a sclerenchymatous pith. Leaf traces diverge from cauline bundles in a typical osmundaceous pattern and leaf bases display a sheath of sclerenchyma around a C-shaped xylem trace with 2-8 protoxylem strands. Within the adaxial concavity of each leaf trace, a single sclerenchyma bundle becomes C-shaped as it enters the cortex. The sclerotic cortex is heterogeneous with an indistinct outer margin. The discovery of Todea tidwellii sp. nov. reveals that the genus Todea evolved by the Lower Cretaceous. A phylogenetic analysis combining morphological characters of living and extinct species with a previously published nucleotide sequence matrix confirms the taxonomic placement of T. tidwellii. Results also support the hypothesis that Osmunda s.l. represents a paraphyletic assemblage and that living species be segregated into two genera, Osmunda and Osmundastrum. Fossil evidence confirms that Osmundaceae originated in the Southern Hemisphere during the Permian, underwent rapid diversification, and species extended around the world during the Triassic. Crown group Osmundaceae originated by the Late Triassic, with living species appearing by the Late Cretaceous.  相似文献   
48.
All epidermal cells in root tips of panicoid grasses have been considered to be capable of hair formation. Observations made in this investigation suggested that cells of two maturation potentials may be present in the root-tip epidermis of Panicum virgatum. Protein bodies which swell and fuse in the region of elongation were revealed in the meristem of this grass by different staining procedures. In many roots not all cells seemed to receive the same amount of these bodies or of the protein-positive material which appeared to arise from them. Only deeply stained cells with large nucleoli were seen to form hairs. Epidermal cells of very hairy roots contained uniform nucleoli and exhibited similar distributions of protein material. The protein positive inclusions were never found in the cortex, a region of cells with one maturation potential. Following chloramphenicol treatment, root tips were found to contain epidermal cells with nucleoli of similar size, a reduced amount of protein bodies, and a reduction in the number of root hairs. RNase treatment did not appear to affect the integrity of the inclusions. The significance of such protein bodies is discussed in relation to differentiation of epidermal cells in P. virgatum.  相似文献   
49.
Numerous specimens of the pteridospermous pollen organs Idanothekion glandulosum and Callandrium callistophytoides are present in Middle and Upper Pennsylvanian petrifaction material, respectively. Several specimens of Idanothekion, previously known only in an isolated condition, are attached to foliage assignable to the monostelic seed fern Callistophyton. Proof of the affinities of Idanothekion allows this genus to be elevated from a form genus to an organ genus in the Callistophytaceae. The structure of the foliage and the mode of attachment of the Idanothekion specimens are like those previously described for Callandrium. Structural features of Idanothekion and Callandrium are compared, and the question of their identity is discussed. At present one basic type of pollen organ, borne on the abaxial surface of foliar pinnules, is known for members of the Callistophytaceae.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号