首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   17篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   9篇
  2015年   13篇
  2014年   12篇
  2013年   20篇
  2012年   19篇
  2011年   18篇
  2010年   7篇
  2009年   15篇
  2008年   17篇
  2007年   13篇
  2006年   6篇
  2005年   9篇
  2004年   11篇
  2003年   14篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   2篇
  1977年   1篇
  1976年   1篇
  1974年   3篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1961年   1篇
排序方式: 共有262条查询结果,搜索用时 31 毫秒
41.
MOTIVATION: Prediction of disulfide bond connectivity facilitates structural and functional annotation of proteins. Previous studies suggest that cysteines of a disulfide bond mutate in a correlated manner. RESULTS: We developed a method that analyzes correlated mutation patterns in multiple sequence alignments in order to predict disulfide bond connectivity. Proteins with known experimental structures and varying numbers of disulfide bonds, and that spanned various evolutionary distances, were aligned. We observed frequent variation of disulfide bond connectivity within members of the same protein families, and it was also observed that in 99% of the cases, cysteine pairs forming non-conserved disulfide bonds mutated in concert. Our data support the notion that substitution of a cysteine in a disulfide bond prompts the substitution of its cysteine partner and that oxidized cysteines appear in pairs. The method we developed predicts disulfide bond connectivity patterns with accuracies of 73, 69 and 61% for proteins with two, three and four disulfide bonds, respectively.  相似文献   
42.
To detect anoxygenic bacteria containing either type 1 or type 2 photosynthetic reaction centers in a single PCR, we designed a degenerate primer set based on the bchY gene. The new primers were validated in silico using the GenBank nucleotide database as well as by PCR on pure strains and environmental DNA.Anoxygenic photosynthetic bacteria are diverse and important members of microbial communities (11, 13, 17, 20). There are five bacterial phyla containing anoxygenic phototrophs: Proteobacteria (purple bacteria), Chlorobi (green sulfur bacteria), Chloroflexi (green nonsulfur bacteria), Acidobacteria (“Candidatus Chloracidobacterium thermophilum” [7]), and Firmicutes (heliobacteria). While Heliobacterium modesticaldum, Chlorobi, and “Ca. Chloracidobacterium thermophilum” have a type 1 reaction center (RC1) similar to photosystem I in Cyanobacteria and higher plants, Chloroflexi and Proteobacteria possess a type 2 reaction center (RC2) similar to photosystem II of oxygenic phototrophs (7, 16).Primers based on pufM, the gene encoding the M subunit of RC2, have been widely used to detect phototrophic purple bacteria (1, 4, 12, 19). However, phototrophic bacteria that do not possess RC2 are not retrieved when pufM is used as the target. Achenbach and coworkers (1) developed primers targeting rRNA genes of Chlorobi, Chloroflexi, and heliobacteria, while Alexander and coworkers (2) have developed primers to specifically detect green sulfur bacteria (Chlorobi) by using 16S rRNA and fmoA as gene targets and applied these primers in environmental studies (3). No currently available primer set can simultaneously target phototrophs containing either RC1 or RC2.Since it is well established that both RC1- and RC2-containing anoxygenic phototrophs synthesize bacteriochlorophylls (BChls), we searched for a universal anoxygenic photosynthesis gene marker among all enzymes involved in BChl biosynthetic pathways. All known pathways for chlorophyll and BChl biosynthesis branch from the heme biosynthesis pathway at protoporphyrin IX and continue to chlorophyllide a (Chlide a) through the same intermediates (9). Chlide a is the branching point that separates chlorophyll and BChl biosynthetic pathways. Moreover, pathways for the synthesis of different BChls are also split at this stage: chlorophyllide oxidoreductase converts Chlide a to 3-vinyl-bacteriophyllide a, which is the precursor for BChls a, b, and g, while a yet unknown enzyme reduces Chlide a to 3-vinyl-bacteriophyllide d, a precursor for antenna BChls c, d, and e in Chlorobium spp. (9). Since 3-vinyl-bacteriophyllide a is the last common intermediate in the synthesis of BChl a and BChl g, and the latter is the only BChl in heliobacteria (14, 15), chlorophyllide oxidoreductase is the only enzyme that is (i) present in anoxygenic phototrophic bacteria and not in oxygenic phototrophs and (ii) common to all known anoxygenic phototrophic bacterial species (with the exception of “Ca. Chloracidobacterium thermophilum,” where the pathway for BChl synthesis is not yet known). Analyzing multiple alignments of the subunits of chlorophyllide oxidoreductase, we found that only the Y subunit (encoded by the BchY gene) had two conserved regions distinguishing this protein from its closest homologs; therefore, the bchY gene was chosen as a universal marker for anoxygenic photosynthesis.Due to likely codon variations coding identical amino acid sequences in different genomes (19), degenerate BchY primers were designed by reverse translation of two conserved regions of the BchY alignment (Fig. (Fig.1):1): bchY_fwd (5′-CCNCARACNATGTGYCCNGCNTTYGG-3′ [26 bases; 2,048 variants; corresponding amino acid sequence, PQTMCPAFG]) and bchY_rev (5′-GGRTCNRCNGGRAANATYTCNCC-3′ [23 bases; 4,096 variants; corresponding amino acid sequence, GE{I/M}FP{A/ V}DP]). Each primer had no more than two bases deviating from known bchY sequences in the GenBank nr database (except for H. modesticaldum) as well as to environmental BchY variants in the GenBank env_nr database. None of these deviations were located in the 3′ ends of the primers (see Tables S2 and S3 in the supplemental material). These primers, therefore, were predicted to amplify a wide diversity of bchY genes under nonstringent PCR conditions (50 to 52°C annealing temperature). The lengths of the expected PCR products were either 480 bp (for green sulfur, green nonsulfur bacteria, and heliobacteria) or 510 bp (for purple bacteria).Open in a separate windowFIG. 1.Multiple-amino-acid alignment of BchY proteins. Sequence abbreviations: R.den, Roseobacter denitrificans (gi|110677524); R.gel, Rubrivivax gelatinosus (gi|29893484); R.cap, Rhodobacter capsulatus (gi|114868); C.lit, Congregibacter litoralis KT 71 (gi|88706663); H.hal, Halorhodospira halophila (gi|121998388); C.aur, Chloroflexus aurantiacus (gi|163849328); C.tep, Chlorobium tepidum (gi|66576270); and H.mod, Heliobacterium modesticaldum (gi|167629410).In order to check primer specificity in silico, a screening procedure was developed. Putative primer sites (tags) for both the bchY_fwd and the bchY_rev primers were gathered from the GenBank nucleotide collection (nt) by BLAST with relaxed search conditions; the tags having mismatches at the 3′ end or more than five overall mismatches from their primer were filtered out, and the remaining tags were mapped to their sequences mimicking PCR primer annealing. Fragments ranging from 300 to 700 bp (virtual “PCR products”) were retrieved from GenBank and annotated (see Table S4 in the supplemental material). All bchY genes present in the GenBank nt database were virtually “amplified,” pointing to the robustness of the primers and our in silico PCR analysis. On the other hand, all nonspecific “amplicons” have major deviations from the primer sequences and would likely not be amplified by a real PCR. The same screening procedure was performed against the GenBank environmental nucleotide collection (env_nt) (see Table S5 in the supplemental material), and as in the case with the nt database, only bchY fragments were virtually “amplified.”The BchY primer set was validated using five key control organisms, including the RC2-containing the purple sulfur bacterium Allochromatium vinosum and the purple nonsulfur bacterium Rhodobacter capsulatus as well as the RC1-containing green sulfur bacterium Chlorobium limicola, green nonsulfur bacterium Chloroflexus aurantiacus, and the heliobacterium H. modesticaldum. Amplifications yielded the predicted products of 510 bp from the purple bacteria and 480 bp from the green sulfur and nonsulfur bacteria and H. modesticaldum. Negative-control Escherichia coli and Synechocystis sp. strain PCC 6803 did not yield amplification products when the bchY primers were used.The designed BchY primer set successfully amplified bchY genes from DNA obtained from both marine (East Mediterranean Sea) and freshwater (Lake Kinneret) environments (see Table S6 in the supplemental material for best BLASTX hits for selected sequenced fragments). These habitats were chosen for testing due to the previously reported wide diversity of their anoxygenic phototrophs (8, 10, 18, 19). A phylogenetic tree of bchY gene fragments amplified from both freshwater and marine DNA samples is shown in Fig. Fig.22.Open in a separate windowFIG. 2.BchY phylogenetic tree based on a maximum likelihood tree to which short sequences were added by ARB parsimony. The branches that appeared on the original maximum likelihood tree are shown with thicker lines. Bootstrap values greater than 50% are indicated next to the branches. Sequences obtained in this study are shown in bold. For reasons of clarity, not all BchY sequences retrieved are shown in the tree. For cases in which a BchY fragment was found in more than three clones, the numbers of clones are given in parentheses. Clones m21_2 and m21_3 are identical to the bchY gene of Hoeflea phototrophica strain DFL-43 (6); the m20_2 clone was identical to the bchY gene of Dinoroseobacter shibae (5).Our study underlines the utility of the bchY gene as a molecular marker for revealing genetic heterogeneity in phototrophic microbial populations. Using both wide-scale bioinformatic analysis and PCR on control strains and naturally occurring microbial community DNA, we have confirmed the specificity and coverage of the proposed degenerate BchY primers.  相似文献   
43.

Background

Eukaryotic chromosomes end with telomeres, which in most organisms are composed of tandem DNA repeats associated with telomeric proteins. These DNA repeats are synthesized by the enzyme telomerase, whose activity in most human tissues is tightly regulated, leading to gradual telomere shortening with cell divisions. Shortening beyond a critical length causes telomere uncapping, manifested by the activation of a DNA damage response (DDR) and consequently cell cycle arrest. Thus, telomere length limits the number of cell divisions and provides a tumor-suppressing mechanism. However, not only telomere shortening, but also damaged telomere structure, can cause telomere uncapping. Dyskeratosis Congenita (DC) and its severe form Hoyeraal-Hreidarsson Syndrome (HHS) are genetic disorders mainly characterized by telomerase deficiency, accelerated telomere shortening, impaired cell proliferation, bone marrow failure, and immunodeficiency.

Methodology/Principal Findings

We studied the telomere phenotypes in a family affected with HHS, in which the genes implicated in other cases of DC and HHS have been excluded, and telomerase expression and activity appears to be normal. Telomeres in blood leukocytes derived from the patients were severely short, but in primary fibroblasts they were normal in length. Nevertheless, a significant fraction of telomeres in these fibroblasts activated DDR, an indication of their uncapped state. In addition, the telomeric 3′ overhangs are diminished in blood cells and fibroblasts derived from the patients, consistent with a defect in telomere structure common to both cell types.

Conclusions/Significance

Altogether, these results suggest that the primary defect in these patients lies in the telomere structure, rather than length. We postulate that this defect hinders the access of telomerase to telomeres, thus causing accelerated telomere shortening in blood cells that rely on telomerase to replenish their telomeres. In addition, it activates the DDR and impairs cell proliferation, even in cells with normal telomere length such as fibroblasts. This work demonstrates a telomere length-independent pathway that contributes to a telomere dysfunction disease.  相似文献   
44.
Long noncoding RNAs (lncRNAs) have been shown to play important roles in gene regulatory networks acting in early development. There has been rapid turnover of lncRNA loci during vertebrate evolution, with few human lncRNAs conserved beyond mammals. The sequences of these rare deeply conserved lncRNAs are typically not similar to each other. Here, we characterize HOXA-AS3 and HOXB-AS3, lncRNAs produced from the central regions of the HOXA and HOXB clusters. Sequence-similar orthologs of both lncRNAs are found in multiple vertebrate species and there is evident sequence similarity between their promoters, suggesting that the production of these lncRNAs predates the duplication of the HOX clusters at the root of the vertebrate lineage. This conservation extends to similar expression patterns of the two lncRNAs, in particular in cells transiently arising during early development or in the adult colon. Functionally, the RNA products of HOXA-AS3 and HOXB-AS3 regulate the expression of their overlapping HOX5–7 genes both in HT-29 cells and during differentiation of human embryonic stem cells. Beyond production of paralogous protein-coding and microRNA genes, the regulatory program in the HOX clusters therefore also relies on paralogous lncRNAs acting in restricted spatial and temporal windows of embryonic development and cell differentiation.  相似文献   
45.
Ubiquitin-conjugating enzymes (E2s) have a dominant role in determining which of the seven lysine residues of ubiquitin is used for polyubiquitination. Here we show that tethering of a substrate to an E2 enzyme in the absence of an E3 ubiquitin ligase is sufficient to promote its ubiquitination, whereas the type of the ubiquitin conjugates and the identity of the target lysine on the substrate are promiscuous. In contrast, when an E3 enzyme is introduced, a clear decision between mono- and polyubiquitination is made, and the conjugation type as well as the identity of the target lysine residue on the substrate becomes highly specific. These features of the E3 can be further regulated by auxiliary factors as exemplified by MDMX (Murine Double Minute X). In fact, we show that this interactor reconfigures MDM2-dependent ubiquitination of p53. Based on several model systems, we propose that although interaction with an E2 is sufficient to promote substrate ubiquitination the E3 molds the reaction into a specific, physiologically relevant protein modification.  相似文献   
46.
47.
48.
Reduced myocardial function at very high heart rates may be due to limited coronary blood supply. The effects of the vasodilators nitroglycerin (10 micrograms kg-1 min-1) and elevated CO2 upon regional function during tachycardia were studied. In open-chest anaesthetized dogs, regional contractile force, epicardial tissue blood flow and local NADH redox level were recorded during graded ventricular pacing. It was found that the vasodilating action of nitroglycerin in the unpaced heart was much lower than produced by CO2 (23.6 +/- 5.8% vs. 137.6 +/- 33.5%). Maximal pacing at 275 bpm caused only a moderate flow elevation in control (20 +/- 6.8%) and CO2 conditions (20.3 +/- 4.03%), but marked vasodilation during nitroglycerin infusion (85.2 +/- 14.6%). Regional function during tachycardia was improved similarly by both vasodilators. NADH levels increased with heart rates under all experimental conditions, but the absolute NADH levels were consistently lower following vasodilator treatments. The lowest NADH levels were observed during nitroglycerin treatment at all heart rates. It is suggested that nitroglycerin augments myocardial functional reserve by preserving oxygen balance more than predicted by its vasodilatory effect alone.  相似文献   
49.
The effective diffusivity of galactose was measured for calcium alginate gel membranes containing immobilized live Zymomonas mobilis cells at concentrations ranging from 0 to 150 g dry wt/L of gel. Since galactose is not taken up by living Z. mobilis organisms, the diffusion of this representative six-carbon sugar could be studied independently of sugar consumption. Various immobilized biomass loadings were achieved by two different techniques: addition of biomass at known concentrations to the sodium alginate solution before membrane formation and growth of cells in the gel to various biomass concentrations. The highest immobilized cell concentration, attained by in situ growth, corresponds to the maximum of this system, as growth beyond this maximum concentration led to disintegration of the gel membrane. The galactose effective diffusivity measurements for both methods of immobilized cell loading overlap within experimental error and follow the same general monotonic decline with entrapped biomass concentration. Most of the data fall below the upper bound predicted by Hashin and Shtrikman (1962) and show good agreement with the random pore model of Wakao and Smith (1962, 1964). Available effective diffusivity data from the literature provide evidence that the random pore model is an excellent predictor of sugar effective diffusivity in gel immobilized cell systems in general.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号