首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4023篇
  免费   304篇
  2021年   57篇
  2020年   27篇
  2019年   41篇
  2018年   53篇
  2017年   55篇
  2016年   91篇
  2015年   120篇
  2014年   138篇
  2013年   234篇
  2012年   224篇
  2011年   232篇
  2010年   133篇
  2009年   124篇
  2008年   177篇
  2007年   205篇
  2006年   191篇
  2005年   167篇
  2004年   148篇
  2003年   151篇
  2002年   138篇
  2001年   122篇
  2000年   131篇
  1999年   98篇
  1998年   59篇
  1997年   59篇
  1996年   45篇
  1995年   43篇
  1994年   38篇
  1993年   38篇
  1992年   86篇
  1991年   72篇
  1990年   67篇
  1989年   63篇
  1988年   52篇
  1987年   50篇
  1986年   45篇
  1985年   44篇
  1984年   47篇
  1983年   50篇
  1982年   34篇
  1981年   21篇
  1979年   35篇
  1978年   20篇
  1977年   19篇
  1975年   28篇
  1974年   20篇
  1973年   19篇
  1971年   18篇
  1970年   21篇
  1967年   20篇
排序方式: 共有4327条查询结果,搜索用时 15 毫秒
81.
Here we report the identification of BET3, a new member of a group of interacting genes whose products have been implicated in the targeting and fusion of endoplasmic reticulum (ER) to Golgi transport vesicles with their acceptor compartment. A temperature-sensitive mutant in bet3-1 was isolated in a synthetic lethal screen designed to identify new genes whose products may interact with BET1, a type II integral membrane protein that is required for ER to Golgi transport. At 37 degrees C, bet3-1 fails to transport invertase, alpha-factor, and carboxypeptidase Y from the ER to the Golgi complex. As a consequence, this mutant accumulates dilated ER and small vesicles. The SNARE complex, a docking/fusion complex, fails to form in this mutant. Furthermore, BET3 encodes an essential 22-kDa hydrophilic protein that is conserved in evolution, which is not a component of this complex. These findings support the hypothesis that Bet3p may act before the assembly of the SNARE complex.  相似文献   
82.
83.
Summary Different species of truffle were studied in order to identify species-specific markers. The isolation of two Tuber magnatum Pico markers is reported. One of these could be used as a probe in dot blot hybridization, allowing the development of a rapid test able to identify Tuber magnatum species.  相似文献   
84.
85.
We have isolated a chaperonin from the hyperthermophilic archaeon Sulfolobus solfataricus based on its ability to inhibit the spontaneous refolding at 50 degrees C of dimeric S. solfataricus malic enzyme. The chaperonin, a 920-kDa oligomer of 57-kDa subunits, displays a potassium-dependent ATPase activity with an optimum temperature at 80 degrees C. S. solfataricus chaperonin promotes correct refoldings of several guanidine hydrochloride-denatured enzymes from thermophilic and mesophilic sources. At a molar ratio of chaperonin oligomer to single polypeptide chain of 1:1, S. solfataricus chaperonin completely inhibits spontaneous refoldings and suppresses aggregation upon dilution of the denaturant; refoldings resume upon ATP hydrolysis, with yields of active molecules and rates of folding notably higher than in spontaneous processes. S. solfataricus chaperonin prevents the irreversible inactivations at 90 degrees C of several thermophilic enzymes by the binding of the denaturation intermediate; the time-courses of inactivations are unaffected and most activity is regained upon hydrolysis of ATP. S. solfataricus chaperonin completely prevents the formation of aggregates during thermal inactivation of chicken egg white lysozyme at 70 degrees C, without affecting the rate of activity loss; ATP hydrolysis results in the recovery of most lytic activity. Tryptophan fluorescence measurements provide evidence that S. solfataricus chaperonin undergoes a dramatic conformational rearrangement in the presence of ATP/Mg, and that the hydrolysis of ATP is not required for the conformational change. The ATP/Mg-induced conformation of the chaperonin is fully unable to bind the protein substrates, probably due to disappearance or modification of the substrate binding sites. This is the first archaeal chaperonin whose involvement in protein folding has been demonstrated.  相似文献   
86.
The phylogeny of Greya Busck (Lepidoptera: Prodoxidae) was inferred from nucleotide sequence variation across a 765-bp region in the cytochrome oxidase I and II genes of the mitochondrial genome. Most parsimonious relationships of 25 haplotypes from 16 Greya species and two outgroup genera (Tetragma and Prodoxus) showed substantial congruence with the species relationships indicated by morphological variation. Differences between mitochondrial and morphological trees were found primarily in the positions of two species, G. variabilis and G. pectinifera, and in the branching order of the three major species groups in the genus. Conflicts between the data sets were examined by comparing levels of homoplasy in characters supporting alternative hypotheses. The phylogeny of Greya species suggests that host-plant association at the family level and larval feeding mode are conservative characters. Transition/transversion ratios estimated by reconstruction of nucleotide substitutions on the phylogeny had a range of 2.0-9.3, when different subsets of the phylogeny were used. The decline of this ratio with the increase in maximum sequence divergence among taxa indicates that transitions are masked by transversions along deeper internodes or long branches of the phylogeny. Among transitions, substitutions of A-->G and T-->C outnumbered their reciprocal substitutions by 2-6 times, presumably because of the approximately 4:1 (77%) A+T-bias in nucleotide base composition. Of all transversions, 73%-80% were A<-->T substitutions, 85% of which occurred at third positions of codons; these estimates did not decrease with an increase in maximum sequence divergence of taxa included in the analysis. The high frequency of A<-->T substitutions is either a reflection or an explanation of the 92% A+T bias at third codon positions.   相似文献   
87.
88.
The morphogenic effect of different light wavelengths on in vitro rooting of Prunus insititia GF655-2 in relation to the presence of napthaleneacetic acid (NAA) in the culture medium was investigated. Results of experiments in which plantlets were rooted in NAA enriched medium showed that the presence of auxin induced rooting even in the dark after an initial lag period. Illumination of the cultures with Red light was as effective in promoting rooting as treatment with 0.5 M NAA; Red was more active in stimulating rooting in the short term than was NAA. The pattern of root formation resulting from the addition of NAA appeared to dominate development under White, Blue and Far Red treatments. Although it was possible to correlate the rooting response to the phytochrome photoequilibrium induced by the light treatments used, there arises a possible interference of specific Blue absorbing photoreceptors.Abbreviations B Blue - FR Far Red - HIR High Irradiance Response - Pfr active (far-red absorbing) form of phytochrome - Ptot total phytochrome - R Red - W White - NAA -naphtaleneacetic acid - BA benzyladenine - IAA indole 3-acetic acid  相似文献   
89.
The Sulfolobus solfataricus β-glycosidase (Sβgly) is a thermostable and thermophilic glycosyl-hydrolase with broad substrate specificity. The enzyme hydrolizes β-D-gluco-, fuco-, and galactosides, and a large number of /Winked glycoside dimers and oligomers, linked β1-3, β1-4, and β1-6, It is able to hydrolize oligosaccharides with up to 5 glucose residues. Furthermore, it is also able to promote transglycosylation reactions. The corresponding gene has been cloned and overexpressed both in yeast and Escherichia coli. Based on sequence and functional data, the Sβgly has been assigned to the so-called BGA family of glycosyl-hydrolases, including β-glycosidases, β-galactosidases and phosho-β-galactosidases from mesophilic and thermophilic organisms of the three domains. The Sβgly has been crystallized and the resolution of its structure is in progress. Because of its special properties, the enzymes has considerable biotechnological potential.  相似文献   
90.
The nucleotide sequence of the hmc operon from Desulfovibrio vulgaris subsp. vulgaris Hildenborough indicated the presence of eight open reading frames, encoding proteins Orf1 to Orf6, Rrf1, and Rrf2. Orf1 is the periplasmic, high-molecular-weight cytochrome (Hmc) containing 16 c-type hemes and described before (W. B. R. Pollock, M. Loutfi, M. Bruschi, B. J. Rapp-Giles, J. D. Wall, and G. Voordouw, J. Bacteriol. 173:220-228, 1991). Orf2 is a transmembrane redox protein with four iron-sulfur clusters, as indicated by its similarity to DmsB from Escherichia coli. Orf3, Orf4, and Orf5 are all highly hydrophobic, integral membrane proteins with similarities to subunits of NADH dehydrogenase or cytochrome c reductase. Orf6 is a cytoplasmic redox protein containing two iron-sulfur clusters, as indicated by its similarity to the ferredoxin domain of [Fe] hydrogenase from Desulfovibrio species. Rrf1 belongs to the family of response regulator proteins, while the function of Rrf2 cannot be derived from the gene sequence. The expression of individual genes in E. coli with the T7 system confirmed the open reading frames for Orf2, Orf6, and Rrf1. Deletion of 0.4 kb upstream from orf1 abolished the expression of Hmc in D. desulfuricans G200, indicating this region to contain the hmc operon promoter. The expression of two truncated hmc genes in D. desulfuricans G200 resulted in stable periplasmic c-type cytochromes, confirming the domain structure of Hmc. We propose that Hmc and Orf2 to Orf6 form a transmembrane protein complex that allows electron flow from the periplasmic hydrogenases to the cytoplasmic enzymes that catalyze the reduction of sulfate. The domain structure of Hmc may be required to allow interaction with multiple hydrogenases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号