首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3824篇
  免费   294篇
  国内免费   18篇
  4136篇
  2022年   20篇
  2021年   60篇
  2020年   31篇
  2019年   42篇
  2018年   50篇
  2017年   54篇
  2016年   87篇
  2015年   110篇
  2014年   128篇
  2013年   217篇
  2012年   217篇
  2011年   225篇
  2010年   117篇
  2009年   105篇
  2008年   168篇
  2007年   199篇
  2006年   187篇
  2005年   156篇
  2004年   145篇
  2003年   152篇
  2002年   137篇
  2001年   120篇
  2000年   129篇
  1999年   97篇
  1998年   55篇
  1997年   53篇
  1996年   42篇
  1995年   40篇
  1994年   36篇
  1993年   33篇
  1992年   86篇
  1991年   70篇
  1990年   68篇
  1989年   62篇
  1988年   47篇
  1987年   50篇
  1986年   45篇
  1985年   40篇
  1984年   44篇
  1983年   47篇
  1982年   19篇
  1981年   18篇
  1979年   34篇
  1978年   18篇
  1975年   26篇
  1974年   20篇
  1973年   19篇
  1971年   17篇
  1970年   21篇
  1967年   20篇
排序方式: 共有4136条查询结果,搜索用时 15 毫秒
941.
Limitations in our understanding about the mechanisms that underlie source‐sink assimilate partitioning are increasingly becoming a major hurdle for crop yield enhancement via metabolic engineering. By means of a comprehensive approach, this work reports the functional characterization of a DnaJ chaperone related‐protein (named as SPA; sugar partition‐affecting) that is involved in assimilate partitioning in tomato plants. SPA protein was found to be targeted to the chloroplast thylakoid membranes. SPA‐RNAi tomato plants produced more and heavier fruits compared with controls, thus resulting in a considerable increment in harvest index. The transgenic plants also displayed increased pigment levels and reduced sucrose, glucose and fructose contents in leaves. Detailed metabolic and enzymatic activities analyses showed that sugar phosphate intermediates were increased while the activity of phosphoglucomutase, sugar kinases and invertases was reduced in the photosynthetic organs of the silenced plants. These changes would be anticipated to promote carbon export from foliar tissues. The combined results suggested that the tomato SPA protein plays an important role in plastid metabolism and mediates the source‐sink relationships by affecting the rate of carbon translocation to fruits.  相似文献   
942.
A protein of 31.5 kDa belonging to the NADPH oxidase of neutrophils was phosphorylated following stimulation of the cells with phorbol myristate acetate. The same protein was phosphorylated in vitro in the presence ofcytosol and of Ca2+ and phosphatidylserine. The phosphorylation in vitro of the 31.5 kDa protein was increased by phorbol myristate acetate and was inhibited by trifluoperazine. The data are compatible with an involvement of protein kinase C in the activation of NADPH oxidase.

NADPH oxidase Cytochrome b−245 Phosphorylation Protein kinase Neutrophil activation Respiratory burst  相似文献   

943.
944.

Background

Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow–derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs.

Methodology/Principal Findings

A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34+ cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34+ cells was decreased.

Conclusions/Significance

Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation.  相似文献   
945.
Highlights? FBXO11 targets CDT2, a CRL4 substrate receptor, for proteasomal degradation ? CDK-mediated phosphorylation of CDT2 degron inhibits recognition by FBXO11 ? FBXO11-mediated degradation of CDT2 controls the timing of cell-cycle exit ? FBXO11-CDT2 functional interaction is evolutionary conserved from worms to humans  相似文献   
946.
947.
Biological invasions and introgressive hybridization are major drivers for the decline of native freshwater fish. However, the magnitude of the problem across a native species range, the mechanisms shaping introgression as well as invader's dispersal and the relative role of biological invasions in the light of multiple environmental stressors are rarely described. Here, we report extensive (N = 665) mtDNA sequence and (N = 692) microsatellite genotypic data of 32 Northern Adriatic sites aimed to unravel the invasion of the European Barbus barbus in Italy and the hybridization and decline of the endemic B. plebejus. We highlight an exceptionally fast breakthrough of B. barbus within the Po River basin, leading to widespread introgressive hybridization with the endemic B. plebejus within few generations. In contrast, adjacent drainage systems are still unaffected from B. barbus invasion. We show that barriers to migration are inefficient to halt the invasion process and that propagule pressure, and not environmental quality, is the major driver responsible for B. barbus success. Both introgressive hybridization and invader's dispersal are facilitated by ongoing fisheries management practices. Therefore, immediate changes in fisheries management (i.e. stocking and translocation measures) and a detailed conservation plan, focussed on remnant purebred B. plebejus populations, are urgently needed.  相似文献   
948.
949.
Through a mechanism known as RNA interference (RNAi), small interfering RNA (siRNA) molecules can target complementary mRNA strands for degradation, thus specifically inhibiting gene expression. The ability of siRNAs to inhibit gene expression offers a mechanism that can be exploited for novel therapeutics. Indeed, over the past decade, at least 21 siRNA therapeutics have been developed for more than a dozen diseases, including various cancers, viruses, and genetic disorders. Like other biological drugs, RNAi-based therapeutics often require a delivery vehicle to transport them to the targeted cells. Thus, the clinical advancement of numerous siRNA drugs has relied on the development of siRNA carriers, including biodegradable nanoparticles, lipids, bacteria, and attenuated viruses. Most therapies permit systemic delivery of the siRNA drug, while others use ex vivo delivery by autologous cell therapy. Advancements in bioengineering and nanotechnology have led to improved control of delivery and release of some siRNA therapeutics. Likewise, progress in molecular biology has allowed for improved design of the siRNA molecules. Here, we provide an overview of siRNA therapeutics in clinical trials, including their clinical progress, the challenges they have encountered, and the future they hold in the treatment of human diseases.  相似文献   
950.
毛乌素沙地南缘沙丘生物结皮中微生物分布特征   总被引:4,自引:0,他引:4  
为探明半干旱沙区生物结皮中微生物分布特征,对毛乌素沙地南缘沙丘生物结皮中微生物数量进行了测定。结果表明:微生物总数从丘顶到丘间地呈递增趋势,除丘顶与迎风坡、迎风坡与背风坡结皮层微生物总数差异不显著外,其他各地貌部位结皮层微生物数量之间差异显著。同一地貌部位结皮层、0~5和5~10cm土层微生物垂直分布有变化,其变化规律为:除迎风坡放线菌数量呈先增加后递减、迎风坡微生物总数、细菌、真菌和丘顶真菌数量随剖面的加深呈递减外,其他各地貌部位微生物数量均呈先降低,后增加的趋势。微生物类群的组成表现为细菌最多,放线菌次之,真菌最少。在丘间地细菌所占微生物总数的比例与丘顶相比有所增加,而放线菌和真菌的比例有所减少。结皮下0~5和5~10cm土层微生物分布与土壤含水量的变化同步,说明土壤水分可能是影响微生物垂直分布的重要因子。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号