首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   828篇
  免费   61篇
  889篇
  2023年   7篇
  2022年   12篇
  2021年   29篇
  2020年   19篇
  2019年   15篇
  2018年   17篇
  2017年   12篇
  2016年   31篇
  2015年   52篇
  2014年   53篇
  2013年   73篇
  2012年   68篇
  2011年   86篇
  2010年   53篇
  2009年   40篇
  2008年   43篇
  2007年   43篇
  2006年   50篇
  2005年   33篇
  2004年   42篇
  2003年   35篇
  2002年   29篇
  2001年   1篇
  2000年   4篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有889条查询结果,搜索用时 9 毫秒
151.
Proteins employ aromatic residues for carbohydrate binding in a wide range of biological functions. Glycoside hydrolases, which are ubiquitous in nature, typically exhibit tunnels, clefts, or pockets lined with aromatic residues for processing carbohydrates. Mutation of these aromatic residues often results in significant activity differences on insoluble and soluble substrates. However, the thermodynamic basis and molecular level role of these aromatic residues remain unknown. Here, we calculate the relative ligand binding free energy by mutating tryptophans in the Trichoderma reesei family 6 cellulase (Cel6A) to alanine. Removal of aromatic residues near the catalytic site has little impact on the ligand binding free energy, suggesting that aromatic residues immediately upstream of the active site are not directly involved in binding, but play a role in the glucopyranose ring distortion necessary for catalysis. Removal of aromatic residues at the entrance and exit of the Cel6A tunnel, however, dramatically impacts the binding affinity, suggesting that these residues play a role in chain acquisition and product stabilization, respectively. The roles suggested from differences in binding affinity are confirmed by molecular dynamics and normal mode analysis. Surprisingly, our results illustrate that aromatic-carbohydrate interactions vary dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, these results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering strategies for biomass utilization. Generally, these results suggest that nature employs aromatic-carbohydrate interactions with a wide range of binding affinities for diverse functions.  相似文献   
152.
153.
A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6 developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale, with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics through developmental stages.  相似文献   
154.
Macrophages display remarkable plasticity, allowing these cells to adapt to changing microenvironments and perform functions as diverse as tissue development and homeostasis, inflammation, pathogen clearance and wound healing. Macrophage activation can be triggered by Th1 cytokines and pathogen-associated or endogenous danger signals, leading to the formation of classically activated or M1 macrophages. On the other hand, anti-inflammatory mediators, including IL-4, IL-10, TGF-β and M-CSF, induce diverse anti-inflammatory types of macrophages, known under the generic term M2. In human breast carcinomas, tumor-associated macrophage (TAM) density correlates with poor prognosis. In mouse models of breast cancer, eliminating macrophages from the tumor site, either via genetic or therapeutic means, results in retarded tumor progression. Over the years, multiple signals from the mammary tumor microenvironment have been reported to influence the TAM phenotype and TAM have been propagated as anti-inflammatory M2-like cells. Recent developments point to the existence of at least two distinct TAM subpopulations in mammary tumors, based on a differential expression of markers such as CD206 or MHC II and different in vivo behaviour: perivascular, migratory TAM which are less M2-like, and sessile TAM found at tumor-stroma borders and/or hypoxic regions that resemble more M2-like or "trophic" macrophages. Hence, a further refinement of the molecular and functional heterogeneity of TAM is an avenue for further research, with a potential impact on the usefulness of these cells as therapeutic targets.  相似文献   
155.
The alkaloid drug berberine (BBR) was recently described to decrease plasma cholesterol and triglycerides (TGs) in hypercholesterolemic patients by increasing expression of the hepatic low density lipoprotein receptor (LDLR). Using HepG2 human hepatoma cells, we found that BBR inhibits cholesterol and TG synthesis in a similar manner to the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Significant increases in AMPK phosphorylation and AMPK activity were observed when the cells were incubated with BBR. Activation of AMPK was also demonstrated by measuring the phosphorylation of acetyl-CoA carboxylase, a substrate of AMPK, correlated with a subsequent increase in fatty acid oxidation. All of these effects were abolished by the mitogen-activated protein kinase kinase inhibitor PD98059. Treatment of hyperlipidemic hamsters with BBR decreased plasma LDL cholesterol and strongly reduced fat storage in the liver. These findings indicate that BBR, in addition to upregulating the LDLR, inhibits lipid synthesis in human hepatocytes through the activation of AMPK. These effects could account for the strong reduction of plasma TGs observed with this drug in clinical trials.  相似文献   
156.
Based on its shedding and binding activities, the disintegrin and metalloprotease 12 (ADAM12) has been implicated in cell signaling. Here we investigate the intracellular protein interaction network of the transmembrane ADAM12L variant using an integrative approach. We identify the integrin-linked kinase (ILK) as a new partner for ADAM12L cellular functions. We demonstrate that ADAM12L coimmunoprecipitates with ILK in cells and that its cytoplasmic tail is required for this interaction. In human cultured hepatic stellate cells (HSCs), which express high levels of endogenous ADAM12L and ILK, the two proteins are redistributed to focal adhesions upon stimulation of a β1 integrin-dependent pathway. We show that down-regulation of ADAM12L in HSCs leads to cytoskeletal disorganization and loss of adhesion. Conversely, up-regulation of ADAM12L induces the Akt Ser-473 phosphorylation-dependent survival pathway via stimulation of β1 integrins and activation of phosphoinositide 3-kinase (PI3K). Depletion of ILK inhibits this effect, which is independent of ADAM12L proteolytic activity and involves its cytoplasmic domain. We further demonstrate that overexpression of ADAM12L promotes kinase activity from ILK immunoprecipitates. Our data suggest a new role for ADAM12L in mediating the functional association of ILK with β1 integrin to regulate cell adhesion/survival through a PI3K/Akt signaling pathway.  相似文献   
157.
158.
We describe the use of zinc-finger nucleases (ZFNs) for somatic and germline disruption of genes in zebrafish (Danio rerio), in which targeted mutagenesis was previously intractable. ZFNs induce a targeted double-strand break in the genome that is repaired to generate small insertions and deletions. We designed ZFNs targeting the zebrafish golden and no tail/Brachyury (ntl) genes and developed a budding yeast-based assay to identify the most active ZFNs for use in vivo. Injection of ZFN-encoding mRNA into one-cell embryos yielded a high percentage of animals carrying distinct mutations at the ZFN-specified position and exhibiting expected loss-of-function phenotypes. Over half the ZFN mRNA-injected founder animals transmitted disrupted ntl alleles at frequencies averaging 20%. The frequency and precision of gene-disruption events observed suggest that this approach should be applicable to any loci in zebrafish or in other organisms that allow mRNA delivery into the fertilized egg.  相似文献   
159.
160.
Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号