首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7826篇
  免费   824篇
  8650篇
  2022年   61篇
  2021年   135篇
  2020年   75篇
  2019年   106篇
  2018年   105篇
  2017年   88篇
  2016年   165篇
  2015年   251篇
  2014年   278篇
  2013年   342篇
  2012年   454篇
  2011年   441篇
  2010年   273篇
  2009年   234篇
  2008年   354篇
  2007年   335篇
  2006年   354篇
  2005年   304篇
  2004年   337篇
  2003年   304篇
  2002年   304篇
  2001年   195篇
  2000年   188篇
  1999年   159篇
  1998年   91篇
  1997年   83篇
  1996年   91篇
  1995年   60篇
  1994年   71篇
  1993年   76篇
  1992年   120篇
  1991年   119篇
  1990年   126篇
  1989年   95篇
  1988年   100篇
  1987年   100篇
  1986年   104篇
  1985年   93篇
  1984年   67篇
  1983年   59篇
  1982年   69篇
  1981年   71篇
  1980年   51篇
  1979年   68篇
  1978年   80篇
  1977年   56篇
  1975年   56篇
  1974年   47篇
  1973年   60篇
  1971年   48篇
排序方式: 共有8650条查询结果,搜索用时 0 毫秒
991.
992.
993.
This study aimed to determine the cellular aging of osteophyte‐derived mesenchymal cells (oMSCs) in comparison to patient‐matched bone marrow stromal cells (bMSCs). Extensive expansion of the cell cultures was performed and early and late passage cells (passages 4 and 9, respectively) were used to study signs of cellular aging, telomere length, telomerase activity, and cell‐cycle‐related gene expression. Our results showed that cellular aging was more prominent in bMSCs than in oMSCs, and that oMSCs had longer telomere length in late passages compared with bMSCs, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSCs and not in bMSCs. In osteophyte tissues telomerase‐positive cells were found to be located perivascularly and were Stro‐1 positive. Fifteen cell‐cycle regulator genes were investigated and only three genes (APC, CCND2, and BMP2) were differentially expressed between bMSC and oMSC. Our results indicate that oMSCs retain a level of telomerase activity in vitro, which may account for the relatively greater longevity of these cells, compared with bMSCs, by preventing replicative senescence. J. Cell. Biochem. 108: 839–850, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
994.
Dynamins induce membrane vesiculation during endocytosis and Golgi budding in a process that requires assembly-dependent GTPase activation. Brain-specific dynamin 1 has a weaker propensity to self-assemble and self-activate than ubiquitously expressed dynamin 2. Here we show that dynamin 3, which has important functions in neuronal synapses, shares the self-assembly and GTPase activation characteristics of dynamin 2. Analysis of dynamin hybrids and of dynamin 1-dynamin 2 and dynamin 1-dynamin 3 heteropolymers reveals that concentration-dependent GTPase activation is suppressed by the C-terminal proline/arginine-rich domain of dynamin 1. Dynamin proline/arginine-rich domains also mediate interactions with SH3 domain-containing proteins and thus regulate both self-association and heteroassociation of dynamins.  相似文献   
995.
Increasingly a number of proteins important in the regulation of bone osteoclast development have been shown primarily influence osteoclastogenesis under conditions of physiologic or pathologic stress. Why basal osteoclastogenesis is normal and how these proteins regulate stress osteoclastogenic responses, as opposed to basal osteoclastogenesis, is unclear. LIM proteins of the Ajuba/Zyxin family localize to cellular sites of cell adhesion where they contribute to the regulation of cell adhesion and migration, translocate into the nucleus where they can affect cell fate, but are also found in the cytoplasm where their function is largely unknown. We show that one member of this LIM protein family, Limd1, is uniquely up-regulated during osteoclast differentiation and interacts with Traf6, a critical cytosolic regulator of RANK-L-regulated osteoclast development. Limd1 positively affects the capacity of Traf6 to activate AP-1, and Limd1(-/-) osteoclast precursor cells are defective in the activation of AP-1 and thus induction of NFAT2. Limd1(-/-) mice, although having normal basal bone osteoclast numbers and bone density, are resistant to physiological and pathologic osteoclastogenic stimuli. These results implicate Limd1 as a potentially important regulator of osteoclast development under conditions of stress.  相似文献   
996.
Two of the eight recognized lion subspecies, North African Barbary lion (Panthera leo leo) and South African Cape lion (Panthera leo melanochaita), have become extinct in the wild in the last 150 years. Based on sequences of mitochondrial DNA (mtDNA) control region (HVR1) extracted from museum specimens of four Barbary and one Cape lion, the former was probably a distinct population characterized by an invariable, unique mtDNA haplotype, whilst the latter was likely a part of the extant southern African lion population. Extinction of the Barbary line, which may still be found in “generic” zoo lions, would further erode lion genetic diversity. Therefore, appropriate management of such animals is important for maintaining the overall genetic diversity of the species. The mtDNA haplotype unique to the Barbary lion, in combination with the small size of the HVR1 analyzed (c. 130 bp), makes it possible and cost-effective to identify unlabelled Barbary specimens kept in museums and “generic” captive lions that may carry the Barbary line. An initial study of five samples from the lion collection of the King of Morocco, tested using this method, shows that they are not maternally Barbary.  相似文献   
997.
Saturation transfer difference (STD) (1)H NMR experiments were used to probe the epitope binding characteristics of the sialidase [EC 3.2.1.18] from the bacterium Vibrio cholerae, the causative agent of cholera. Binding preferences were investigated for N-acetylneuraminic acid (Neu5Ac, 1), the product of the sialidase catalytic reaction, for the known sialidase inhibitor 5-acetamido-2,6-anhydro-3,5-dideoxy-D-glycero-D-galacto-non-2-enoic acid (Neu5Ac2en, 2), and for the uronic acid-based Neu5Ac2en mimetic iso-propyl 2-acetamido-2,4-dideoxy-alpha-L-threo-hex-4-enopyranosiduronic acid (3), in which the native glycerol side-chain of Neu5Ac2en is replaced with an O-iso-propyl ether. The STD experiments provided evidence, supporting previous studies, that Neu5Ac (1) binds to the sialidase as the alpha-anomer. Docking experiments using DOCK (version 4.0.1) revealed further information regarding the binding characteristics of the enzyme active site in complex with Neu5Ac2en (2) and the Neu5Ac2en mimetic (3), indicating an expected dominant interaction of the acetamide moiety with the protein.  相似文献   
998.
999.
REV1 is central to the DNA damage response of eukaryotes through an as yet poorly understood role in translesion synthesis. REV1 is a member of the Y-type DNA polymerase family and is capable of in vitro deoxycytidyl transferase activity opposite a range of damaged bases. However, non-catalytic roles for REV1 have been suggested by the Saccharomyces cerevisiae rev1-1 mutant, which carries a point mutation in the N-terminal BRCT domain, and the recently demonstrated ability of the mammalian protein to interact with each of the other translesion polymerases via its extreme C-terminus. Here, we show that a region adjacent to this polymerase interacting domain mediates an interaction with PCNA. These C-terminal domains of REV1 are necessary, although not sufficient, for effective tolerance of DNA damage in the avian cell line DT40, while the BRCT domain and transferase activity are not directly required. Together these data provide strong support for REV1 playing an important non-catalytic role in coordinating translesion synthesis. Further, unlike in budding yeast, rad18 is not epistatic to rev1 for DNA damage tolerance suggesting that REV1 and RAD18 play largely independent roles in the control of vertebrate translesion synthesis.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号