首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7813篇
  免费   824篇
  2022年   50篇
  2021年   135篇
  2020年   75篇
  2019年   106篇
  2018年   105篇
  2017年   88篇
  2016年   165篇
  2015年   251篇
  2014年   278篇
  2013年   342篇
  2012年   454篇
  2011年   441篇
  2010年   273篇
  2009年   234篇
  2008年   354篇
  2007年   335篇
  2006年   354篇
  2005年   304篇
  2004年   337篇
  2003年   304篇
  2002年   304篇
  2001年   195篇
  2000年   188篇
  1999年   159篇
  1998年   91篇
  1997年   83篇
  1996年   91篇
  1995年   60篇
  1994年   71篇
  1993年   76篇
  1992年   120篇
  1991年   119篇
  1990年   126篇
  1989年   95篇
  1988年   100篇
  1987年   100篇
  1986年   104篇
  1985年   93篇
  1984年   67篇
  1983年   59篇
  1982年   69篇
  1981年   71篇
  1980年   51篇
  1979年   68篇
  1978年   80篇
  1977年   56篇
  1975年   56篇
  1974年   47篇
  1973年   60篇
  1971年   48篇
排序方式: 共有8637条查询结果,搜索用时 465 毫秒
51.
The structures of ZI- and ZII-form RNA and DNA oligonucleotides were energy minimized in vacuum using the AMBER molecular mechanics force field. Alternating C-G sequences were studied containing either unmodified nucleotides, 8-bromoguanosine in place of all guanosine residues, 5-bromocytidine in place of all cytidine residues, or all modified residues. Some molecules were also energy minimized in the presence of H2O and cations. Free energy perturbation calculations were done in which G8 and C5 hydrogen atoms in one or two residues of Z-form RNAs and DNAs were replaced in a stepwise manner by bromines. Bromination had little effect on the structures of the energy-minimized molecules. Both the minimized molecular energies and the results of the perturbation calculations indicate that bromination of guanosine at C8 will stabilize the Z forms of RNA and DNA relative to the nonbrominated Z form, while bromination of cytidine at C5 stabilizes Z-DNA and destabilizes Z-RNA. These results are in agreement with experimental data. The destabilizing effect of br5C in Z-RNAs is apparently due to an unfavorable interaction between the negatively charged C5 bromine atom and the guanosine hydroxyl group. The vacuum-minimized energies of the ZII-form oligonucleotides are lower than those of the corresponding ZI-form molecules for both RNA and DNA. Previous x-ray diffraction, nmr, and molecular mechanics studies indicate that hydration effects may favor the ZI conformation over the ZII form in DNA. Molecular mechanics calculations show that the ZII-ZI energy differences for the RNAs are greater than three times those obtained for the DNAs. This is due to structurally reinforcing hydrogen-bonding interactions involving the hydroxyl groups in the ZII form, especially between the guanosine hydroxyl hydrogen atom and the 3'-adjacent phosphate oxygen. In addition, the cytidine hydroxyl oxygen forms a hydrogen bond with the 5'-adjacent guanosine amino group in the ZII-form molecule. Both of these interactions are less likely in the ZI-form molecule: the former due to the orientation of the GpC phosphate away from the guanosine ribose in the ZI form, and the latter apparently due to competitive hydrogen bonding of the cytidine 2'-hydroxyl hydrogen with the cytosine carbonyl oxygen in the ZI form. The hydrogen-bonding interaction between the cytidine hydroxyl oxygen and the 5'-adjacent guanosine amino group in Z-RNA twists the amino group out of the plane of the base. This may be responsible for differences in the CD and Raman spectra of Z-RNA and Z-DNA.  相似文献   
52.
Human ejaculated spermatozoa are heterogeneous and can be separated into two distinct populations according to their respective buoyant densities. In order to investigate the functional differences between these two types of spermatozoa, we have searched for the presence of galactosyltransferase. A Western blot of sperm proteins following their electrophoresis was probed with an anti-galactosyltransferase serum revealing that this enzyme is present in human spermatozoa. Furthermore, galactosyltransferase is detectable only in those proteins isolated from the head of high density spermatozoa. These results suggest that ejaculated spermatozoa consist of two populations that are functionally different.  相似文献   
53.
Isoelectric focusing studies of bacteriorhodopsin   总被引:1,自引:0,他引:1  
Purified bacteriorhodopsin (BR) samples show a minimum of four isoelectric forms in immobilized pH gradient isoelectric focusing gels. The bands occur as doublets with isoelectric points (pI) centered at 5.20 (principal species) and 5.60. In typical preparations additional bands may be observed at 4.90, 5.07 and 5.50. Purple membrane (PM) was proteolyzed with papain to calibrate the pI shift produced by changing the number of charges on the protein. Asp-242 is removed during the first cleavage between residues 239 and 240 resulting in the loss of a single negative charge and a shift of the principal doublet by +0.35 pH units to pI 5.55. The second papain cleavage occurs between residues 231 and 232 which removes Glu-232, -234 and -237 and shifts the pI by +0.60 pH units to pI 6.10. The +0.60 pH shift upon the second papain cleavage is consistent with the loss of two negative charges and is supported by prior evidence that at least one of the three glutamate residues lost during the second proteolysis step is protonated and neutral in the intact protein. The native and proteolyzed products of BR retain the characteristic 550 nm absorption maxima for solubilized BR. A model for the structural origin of the pI heterogeneity of BR species in proteolyzed PM is presented.  相似文献   
54.
Summary The ultrastructural and transmitter development of lumbar sympathetic ganglia was studied in embryonic day-6 through-18 chick embryos. At embryonic day 6, ganglia are populated by two morphologically distinct types of neuronal cells and Schwann cell precursors. The neuronal populations basically comprise a granule-containing cell and a developing principal neuron. Granule-containing cells have, an irregularly shaped or oval nucleus with small clumps of chromatin attached to the inner nuclear membrane and numerous large (up to 300 nm) membrane-limited granules. Developing principal neurons display a more rounded vesicular nucleus with evenly distributed chromatin, prominent nucleoli, more developed areas of Golgi complexes, and rough endoplasmic reticulum and large dense-core vesicles up to 120 nm in diameter. There are granule-containing cells with fewer and smaller granules which still display the nucleus typical for granule-containing cells. These granule-containing cells may develop toward developing principal neurons or the resting state of granule-containing cells found in older ganglia. Both granule-containing cells and developing principal neurons proliferate and can undergo degeneration. At embryonic day 9 there are far more developing principal neurons than granule-containing cells. Most granule-containing cells have very few granules. Mitotic figures and signs of cell degeneration are still apparent. Synapse-like terminals are found on both developing principal neurons and granule-containing cells. Ganglionic development from embryonic day 11 through 18 comprises extensive maturation of developing principal neurons and a numerical decline of granule-containing cells. Some granule-containing cells with very few and small granules still persist at embryonic day 18. The mean catecholamine content per neuron increases from 0.044 femtomol at embryonic day 7 to 0.22 femtomol at embryonic day 15. Concomitantly, there is a more than 6-fold increase in tyrosine hydroxylase activity. Adrenaline has a 14% share in total catecholamines at embryonic day 15. Somatostatin levels are relatively high at embryonic day 7 (1.82 attomol per neuron) and are 10-fold reduced by embryonic day 15. Our results suggest the presence of two morphologically distinct sympathetic neuronal precursors at embryonic day 6: one with a binary choice to become a principal neuron or to die, the other one, a granule-containing cell, which alternatively may develop into a principal neuron, acquire a resting state or die.  相似文献   
55.
56.
57.
58.
The deduced amino acid sequence of Acinetobacter calcoaceticus N-(5'-phosphoribosyl) anthranilate isomerase (PRAI), which is coded by trpF, was compared with TrpF of Caulobacter crescentus, Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Neurospora crassa, and Aspergillus nidulans. Sixty percent of identical or similar amino acids were located in alpha/beta TIM (triose-phosphate isomerase) barrels and in residues important in substrate binding and catalysis. In addition, the analysis of trpF genes presented here supports a model by which fusion between separate trpC and trpF genes arose in some cases by in-frame deletions.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号