首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7342篇
  免费   749篇
  2022年   47篇
  2021年   129篇
  2020年   71篇
  2019年   99篇
  2018年   96篇
  2017年   87篇
  2016年   158篇
  2015年   237篇
  2014年   268篇
  2013年   325篇
  2012年   434篇
  2011年   410篇
  2010年   257篇
  2009年   222篇
  2008年   331篇
  2007年   322篇
  2006年   339篇
  2005年   281篇
  2004年   319篇
  2003年   281篇
  2002年   289篇
  2001年   176篇
  2000年   177篇
  1999年   149篇
  1998年   87篇
  1997年   78篇
  1996年   91篇
  1995年   62篇
  1994年   63篇
  1993年   71篇
  1992年   99篇
  1991年   110篇
  1990年   111篇
  1989年   80篇
  1988年   93篇
  1987年   90篇
  1986年   94篇
  1985年   88篇
  1984年   63篇
  1983年   56篇
  1982年   66篇
  1981年   67篇
  1980年   49篇
  1979年   64篇
  1978年   71篇
  1977年   53篇
  1976年   42篇
  1975年   48篇
  1973年   57篇
  1971年   41篇
排序方式: 共有8091条查询结果,搜索用时 109 毫秒
901.
Three peptides produced by a Lactobacillus acidophilus DPC6026 fermentation of sodium caseinate and showing antibacterial activity against pathogenic strains Enterobacter sakazakii ATCC 12868 and Escherichia coli DPC5063 were characterized. These peptides were all generated from bovine alpha(s1)-casein and identified as IKHQGLPQE, VLNENLLR, and SDIPNPIGSENSEK. These peptides may have bioprotective applicability and potential use in milk-based formula, which has been linked to E. sakazakii infection in neonates.  相似文献   
902.
Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport.  相似文献   
903.
The Escherichia coli RdgC protein is a potential negative regulator of RecA function. RdgC inhibits RecA protein-promoted DNA strand exchange, ATPase activity, and RecA-dependent LexA cleavage. The primary mechanism of RdgC inhibition appears to involve a simple competition for DNA binding sites, especially on duplex DNA. The capacity of RecA to compete with RdgC is improved by the DinI protein. RdgC protein can inhibit DNA strand exchange catalyzed by RecA nucleoprotein filaments formed on single-stranded DNA by binding to the homologous duplex DNA and thereby blocking access to that DNA by the RecA nucleoprotein filaments. RdgC protein binds to single-stranded and double-stranded DNA, and the protein can be visualized on DNA using electron microscopy. RdgC protein exists in solution as a mixture of oligomeric states in equilibrium, most likely as monomers, dimers, and tetramers. This concentration-dependent change of state appears to affect its mode of binding to DNA and its capacity to inhibit RecA. The various species differ in their capacity to inhibit RecA function.  相似文献   
904.
Relaxin-3 is the most recently discovered member of the relaxin family of peptide hormones. In contrast to relaxin-1 and -2, whose main functions are associated with pregnancy, relaxin-3 is involved in neuropeptide signaling in the brain. Here, we report the solution structure of human relaxin-3, the first structure of a relaxin family member to be solved by NMR methods. Overall, relaxin-3 adopts an insulin-like fold, but the structure differs crucially from the crystal structure of human relaxin-2 near the B-chain terminus. In particular, the B-chain C terminus folds back, allowing Trp(B27) to interact with the hydrophobic core. This interaction partly blocks the conserved RXXXRXXI motif identified as a determinant for the interaction with the relaxin receptor LGR7 and may account for the lower affinity of relaxin-3 relative to relaxin for this receptor. This structural feature is likely important for the activation of its endogenous receptor, GPCR135.  相似文献   
905.
Hexacoordinate hemoglobins are found in many living organisms ranging from prokaryotes to plants and animals. They are named "hexacoordinate" because of reversible coordination of the heme iron by a histidine side chain located in the heme pocket. This endogenous coordination competes with exogenous ligand binding and causes multiphasic relaxation time courses following rapid mixing or flash photolysis experiments. Previous rapid mixing studies have assumed a steady-state relationship between hexacoordination and exogenous ligand binding that does not correlate with observed time courses for binding. Here, we demonstrate that this assumption is not valid for some hexacoordinate hemoglobins, and that multiphasic time courses are due to an appreciable fraction of pentacoordinate heme resulting from relatively small equilibrium constants for hexacoordination (K(H)). CO binding reactions initiated by rapid mixing are measured for four plant hexacoordinate hemoglobins, human neuroglobin and cytoglobin, and Synechocystis hemoglobin. The plant proteins, while showing a surprising degree of variability, differ from the others in having much lower values of K(H). Neuroglobin and cytoglobin display dramatic biphasic time courses for CO binding that have not been observed using other techniques. Finally, an independent spectroscopic quantification of K(H) is presented that complements rapid mixing for the investigation of hexacoordination. These results demonstrate that hexacoordination could play a much larger role in regulating affinity constants for ligand binding in human neuroglobin and cytoglobin than in the plant hexacoordinate hemoglobins.  相似文献   
906.
Niacin is known to exert profound beneficial effects on cholesterol levels in humans, although its use is somewhat hampered by the gram quantities necessary to exert effects and the prevalence of compliance-limiting skin flushing side effects that occur. Recently, two G protein-coupled receptors (GPCRs) for niacin were identified and characterized as high (HM74A; GPR109A) and low (HM74; GPR109B) affinity receptors based on the binding affinities of niacin. These receptors also bind acifran (AY-25,712), which is known to modulate lipid levels like niacin, with similar affinities. Twelve analogs of acifran were chemically synthesized. One analogue demonstrated a dose-dependent decrease in serum triglycerides in rats within 3h of oral administration. Next, the acifran analogs were assessed for their activity towards the high and low affinity niacin receptors expressed in CHO-K1 cells. Constructs expressing HM74A or HM74 were stably transfected into CHO-K1 cells and shown to elicit phosphorylation of p42 and p44 mitogen-activated protein kinase (ERK1/ERK2) phosphorylation upon addition of niacin or acifran. The presence of functionally coupled GPCRs was further confirmed using Pertussis toxin, which completely inhibited the ability of either niacin or acifran to elicit phospho-ERK1/ERK2. The EC(50) of p-ERK1/ERK2 for niacin for the high and low affinity receptors was 47nM and indeterminate (i.e., >100microM), respectively, while the EC(50) for acifran was 160 and 316nM, respectively. Two chemical analogs of acifran demonstrated robust phosphorylation of ERK1/ERK2. Collectively, these data suggest that the synthesis of acifran analogs may be a suitable path for developing improved HM74A agonists.  相似文献   
907.
The evolutionary relationship of indoleamine 2,3-dioxygenase (IDO) to some gastropod myoglobins suggests that IDO may undergo autoxidation in vivo such that one or more currently unidentified electron donors are required to maintain IDO heme iron in the active, ferrous state. To evaluate this hypothesis we have used yeast knockout mutants in combination with a recently developed yeast growth assay for IDO activity in vivo to demonstrate a role for cytochrome b(5) and cytochrome b(5) reductase in maintaining IDO activity in vivo.  相似文献   
908.
Production of the soluble portion of the transferrin receptor (sTFR) by baby hamster kidney (BHK) cells is described, and the effect of glycosylation on the biological function of sTFR is evaluated for the first time. The sTFR (residues 121-760) has three N-linked glycosylation sites (Asn251, Asn317, and Asn727). Although fully glycosylated sTFR is secreted into the tissue culture medium ( approximately 40 mg/L), no nonglycosylated sTFR could be produced, suggesting that carbohydrate is critical to the folding, stability, and/or secretion of the receptor. Mutants in which glycosylation at positions 251 and 727 (N251D and N727D) is eliminated are well expressed, whereas production of the N317D mutant is poor. Analysis by electrospray ionization mass spectrometry confirms dimerization of the sTFR and the absence of the carbohydrate at the single site in each mutant. The effect of glycosylation on binding to diferric human transferrin (Fe(2) hTF), an authentic monoferric hTF with iron in the C-lobe (designated Fe(C) hTF), and a mutant (designated Mut-Fe(C) hTF that features a 30-fold slower iron release rate) was determined by surface plasmon resonance; a small ( approximately 20%) but consistent difference is noted for the binding of Fe(C) hTF and the Mut-Fe(C) hTF to the sTFR N317D mutant. The rate of iron release from Fe(C) hTF and Mut-Fe(C) hTF in complex with the sTFR and the sTFR mutants at pH 5.6 reveals that only the N317D mutant has a significant effect. The carbohydrate at position 317 lies close to a region of the TFR previously shown to interact with hTF.  相似文献   
909.
Migration dynamics for the ideal free distribution   总被引:1,自引:0,他引:1  
This article verifies that the ideal free distribution (IFD) is evolutionarily stable, provided the payoff in each patch decreases with an increasing number of individuals. General frequency-dependent models of migratory dynamics that differ in the degree of animal omniscience are then developed. These models do not exclude migration at the IFD where balanced dispersal emerges. It is shown that the population distribution converges to the IFD even when animals are nonideal (i.e., they do not know the quality of all patches). In particular, the IFD emerges when animals never migrate from patches with a higher payoff to patches with a lower payoff and when some animals always migrate to the best patch. It is shown that some random migration does not necessarily lead to undermatching, provided migration occurs at the IFD. The effect of population dynamics on the IFD (and vice versa) is analyzed. Without any migration, it is shown that population dynamics alone drive the population distribution to the IFD. If animal migration tends (for each fixed population size) to the IFD, then the combined migration-population dynamics evolve to the population IFD independent of the two timescales (i.e., behavioral vs. population).  相似文献   
910.
The fungus Aspergillus tamarii transforms progesterone 1 into testololactone 5 in high yield through a four-step enzymatic pathway which is flexible to a range of steroidal substrates. To date, no studies have investigated the fate of C-6 (ring-B) and C-11 (ring-C) functionalized steroidal substrates on metabolism. Remarkably all of the C-6 functionalized substrates underwent reductive metabolism on ring-A in contrast to C-11 functionalized steroids where only ring-D oxidative or reductive transformation occurred. In order to discern the precise role of the functional groups in directing metabolism 6-ketoprogesterone 10 with functionality at C-6 and the ring-D methyl ketone underwent reductive and oxidative transformation on both terminal A and D rings showing that this functionality was directing metabolism. Androst-4-en-3,6-dione 12 devoid of ring-D functionality underwent reductive metabolism on ring-A proving that the C-6 functionality was directing metabolism to this ring with the ring-D methyl ketone responsible for generating transformation at this position. Functionality at C-11 exclusively controlled entry into and degree of metabolism on the lactonization pathway. These novel findings may have important bearing in the future understanding of structure activity relationships in revealing new metabolic pathways and further affords a unique opportunity for generation of novel bioactive steroidal compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号