首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2064篇
  免费   79篇
  国内免费   6篇
  2149篇
  2024年   3篇
  2023年   25篇
  2022年   80篇
  2021年   139篇
  2020年   85篇
  2019年   89篇
  2018年   100篇
  2017年   90篇
  2016年   106篇
  2015年   155篇
  2014年   173篇
  2013年   172篇
  2012年   154篇
  2011年   137篇
  2010年   91篇
  2009年   76篇
  2008年   104篇
  2007年   73篇
  2006年   60篇
  2005年   65篇
  2004年   57篇
  2003年   30篇
  2002年   38篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1964年   2篇
  1962年   1篇
  1961年   1篇
排序方式: 共有2149条查询结果,搜索用时 15 毫秒
41.
α-Phenyl-N-tert-butylnitrone (PBN), a free radical spin trap, has been shown previously to protect retinas against light-induced neurodegeneration, but the mechanism of protection is not known. Here we report that PBN-mediated retinal protection probably occurs by slowing down the rate of rhodopsin regeneration by inhibiting RPE65 activity. PBN (50 mg/kg) protected albino Sprague-Dawley rat retinas when injected 0.5-12 h before exposure to damaging light at 2,700 lux intensity for 6 h but had no effect when administered after the exposure. PBN injection significantly inhibited in vivo recovery of rod photoresponses and the rate of recovery of functional rhodopsin photopigment. Assays for visual cycle enzyme activities indicated that PBN inhibited one of the key enzymes of the visual cycle, RPE65, with an IC(50) = 0.1 mm. The inhibition type for RPE65 was found to be uncompetitive with K(i) = 53 μm. PBN had no effect on the activity of other visual cycle enzymes, lecithin retinol acyltransferase and retinol dehydrogenases. Interestingly, a more soluble form of PBN, N-tert-butyl-α-(2-sulfophenyl) nitrone, which has similar free radical trapping activity, did not protect the retina or inhibit RPE65 activity, providing some insight into the mechanism of PBN specificity and action. Slowing down the visual cycle is considered a treatment strategy for retinal diseases, such as Stargardt disease and dry age-related macular degeneration, in which toxic byproducts of the visual cycle accumulate in retinal cells. Thus, PBN inhibition of RPE65 catalytic action may provide therapeutic benefit for such retinal diseases.  相似文献   
42.
43.
Morphological features, development and reproduction behavior of the parasite Melittobia acasta (Walker) were studied when reared on the pupae of the bumblebee Bombus terrestris L. in the laboratory under 23°C, 50% relative humidity and 12 h light : 12 h dark conditions. The parasites laid transparent white and elongated eggs. Newly hatched larval size and shape were very similar to eggs but they were identified by their body segments. Larvae increased their body size through moulting and transformed into a vermiform shape. Male pupae were shiny brown with dots. The female pupae were distinguished by their black shiny color, shorter size and the presence of compound eyes. Adult male pupae were dark brown and dwarf‐winged, whereas female pupae were macropterous and brachypterous. Reproduction took place by fertilization and also parthenogenetically. Mean fecundity within 5 days by mated (47.9 ± 30.5 female?1) and virgin (7.4 ± 6.8 female?1) females were statistically different. Mated females laid fertilized eggs that produced adult males or females, whereas virgin females laid unfertilized eggs that produced males. Development durations of the virgin female originated eggs, larvae, pupae and adults were statistically identical with those of mated females. The parasites were female‐biased and foundress number did not affect offspring sex ratio. This study shows that both mated and virgin females of M. acasta can produce many offspring on B. terrestris pupae within a short period, indicating that they are dangerous parasites of the bumblebee in a mass rearing system.  相似文献   
44.
Roy  Chittran  Kumar  Rajeev  Hossain  Md Maruf  Das  Arkaprava  Datta  Saumen 《The protein journal》2022,41(3):403-413
The Protein Journal - In enteropathogen, Yersinia enterocolitica, the genes encoding phage shock proteins are organized in an operon (pspA-E), which is activated at the various types of cellular...  相似文献   
45.
Wetlands Ecology and Management - Mangroves adaptive plasticity in the changing environmental conditions is of vital importance for conservation management. Genetic diversity of mangrove brings...  相似文献   
46.
Human and animal exposure demonstrates that uranium is nephrotoxic. However, attempts to reduce it were not found suitable for clinical use. Dietary fish oil (FO) enriched in ω-3 fatty acids reduces the severity of cardiovascular and renal diseases. Present study investigates the protective effect of FO on uranyl nitrate (UN)-induced renal damage. Rats prefed with experimental diets for 15 days, given single nephrotoxic dose of UN (0.5 mg/kg body weight) intraperitoneally. After 5 d of UN treatment, serum/urine parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), oxidative stress and phosphate transport were analyzed in rat kidney. UN nephrotoxicity was characterized by increased serum creatinine and blood urea nitrogen. UN increased the activity of lactate dehydrogenase and NADP-malic enzyme whereas decreased malate, isocitrate and glucose-6-phophate dehydrogenases; glucose-6-phophatase, fructose-1, 6-bisphosphatase and BBM enzyme activities. UN caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation, activities of superoxide dismutase, glutathione peroxidase and decreased catalase activity. Feeding FO alone increased activities of enzymes of glucose metabolism, BBM, oxidative stress and Pi transport. UN-elicited alterations were prevented by FO feeding. However, corn oil had no such effects and was not similarly effective. In conclusion, FO appears to protect against UN-induced nephrotoxicity by improving energy metabolism and antioxidant defense mechanism.  相似文献   
47.
48.
Mitochondria are frequently observed in the vicinity of chloroplasts in photosynthesizing cells, and this association is considered necessary for their metabolic interactions. We previously reported that, in leaf palisade cells of Arabidopsis thaliana, mitochondria exhibit blue‐light‐dependent redistribution together with chloroplasts, which conduct accumulation and avoidance responses under the control of blue‐light receptor phototropins. In this study, precise motility analyses by fluorescent microscopy revealed that the individual mitochondria in palisade cells, labeled with green fluorescent protein, exhibit typical stop‐and‐go movement. When exposed to blue light, the velocity of moving mitochondria increased in 30 min, whereas after 4 h, the frequency of stoppage of mitochondrial movement markedly increased. Using different mutant plants, we concluded that the presence of both phototropin1 and phototropin2 is necessary for the early acceleration of mitochondrial movement. On the contrary, the late enhancement of stoppage of mitochondrial movement occurs only in the presence of phototropin2 and only when intact photosynthesis takes place. A plasma‐membrane ghost assay suggested that the stopped mitochondria are firmly adhered to chloroplasts. These results indicate that the physical interaction between mitochondria and chloroplasts is cooperatively mediated by phototropin2‐ and photosynthesis‐dependent signals. The present study might add novel regulatory mechanism for light‐dependent plant organelle interactions.  相似文献   
49.
This article reports an investigation on light-addressable potentiometric sensor (LAPS) to be used as a possible biological cell-semiconductor hybrid that will enable us to make an interface between the physical and biological system. To increase the surface potential sensitivity, we used a LAPS structure with single insulator (SiO2) coated with poly-L-ornithine and laminin (PLOL) on Si. Efficient culturing of PC-12 and nerve cells of Lymnaea stagnalis on PLOL-coated Si3N4 and SiO2 was achieved. The thickness of the PLOL layer was found to be about 4 nm by the atomic force microscope (AFM) measurement. Using the advantage of this thin layer of PLOL, we compared the performance of a novel structure to the previously reported "PLOL-coated Si3N4/SiO2/Si" structure. Due to high insulating capacitance, the photocurrent response of the novel LAPS was found to be very steep. As a result, higher sensitivity was achieved. This steepness did not degrade during 10 days when the sensor surface was kept in contact with the cell culture medium and environment. The thickness of PLOL layer, its ability to improve the biological cell adhesion, enhanced sensitivity, and experiment with simulated neural action potential (AP) applied to the novel LAPS show a good promise for LAPS to be a biological cell-semiconductor hybrid.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号