首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   7篇
  2022年   1篇
  2021年   2篇
  2018年   5篇
  2017年   8篇
  2016年   9篇
  2015年   10篇
  2014年   19篇
  2013年   15篇
  2012年   8篇
  2011年   10篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
11.
First discovered in the early 1950s, reoviruses (respiratory enteric orphan viruses) were not associated with any known disease, and hence named orphan viruses. Recently, our group reported the isolation of the Melaka virus from a patient with acute respiratory disease and provided data suggesting that this new orthoreovirus is capable of human-to-human transmission and is probably of bat origin. Here we report yet another Melaka-like reovirus (named Kampar virus) isolated from the throat swab of a 54 year old male patient in Kampar, Perak, Malaysia who was suffering from high fever, acute respiratory disease and vomiting at the time of virus isolation. Serological studies indicated that Kampar virus was transmitted from the index case to at least one other individual and caused respiratory disease in the contact case. Sequence analysis of the four small class genome segments indicated that Kampar and Melaka viruses are closely related. This was confirmed by virus neutralization assay, showing an effective two-way cross neutralization, i.e., the serum against one virus was able to neutralize the other. Although the exact origin of Kampar virus is unknown, epidemiological tracing revealed that the house of the index case is surrounded by fruit trees frequently visited by fruit bats. There is a high probability that Kampar virus originated from bats and was transmitted to humans via bat droppings or contaminated fruits. The discovery of Kampar virus highlights the increasing trend of emergence of bat zoonotic viruses and the need to expand our understanding of bats as a source of many unknown viruses.  相似文献   
12.
Cyclodextrin glucanotransferase (CGTase) activity was observed when the bacterium was grown in the medium at various initial pH values, containing carbon, nitrogen, phosphorus and mineral salt sources at 50 °C for 24 h in the shake flasks. The optimisation of this growth medium was carried out using response surface methodology. The design contains a total of 32 experimental trials involving 10 star points and 6 replicates at the centre points. The design was employed by selecting sago starch, peptone from casein, K2HPO4, CaCl2 and initial pH as five independent variables in this study. The optimal calculated values of tested variables for maximal production of CGTase were found to be comprised of: sago starch, 16.02 g/l; peptone from casein, 20 g/l; K2HPO4, 1.4 g/l; CaCl2, 0.2 g/l and initial pH, 7.54 with a predicted CGTase activity of 14.20 U/ml. These predicted optimal parameters were tested in the laboratory and the final CGTase activity obtained was very close to the predicted value at 14.80 U/ml.  相似文献   
13.
Fleshy fruit soften during ripening mainly as a consequence of solubilization and depolymerization of cell wall components. We have performed a comparative study of the polysaccharide content of fruit cell walls during final steps of development and ripening of three strawberry (Fragaria x ananassa Duch.) cultivars with different softening rates. The three chosen varieties showed very different firmness; Camarosa was the firmest, Toyonaka the softest, and Pajaro intermediate between them. Cell walls were extracted, quantified and fractioned by sequential extraction to obtain particular subclasses of cell wall polymers. Cell wall content diminished during the process in the three cultivars. Differences among cultivar cell wall contents were detected only in immature stages. The amount of water soluble polymers (WSP) increased in all cultivars from small green (SG) to white (W) stage, although from the W to 100% red (100%R) stage the WSP remained constant in Camarosa and Pajaro and decreased in Toyonaka. On the contrary, the hydrochloric acid-soluble pectins (HSP) decreased during ripening of all the cultivars analyzed. Camarosa had the largest amount of HSP, but there were no differences between Pajaro and Toyonaka. The amount of hemicellulosic polysaccharides and cellulose also decreased in the three cultivars. Camarosa had the highest amounts of both polysaccharides while Toyonaka had the lowest at immature stages, but there were no differences among cultivars at 100%R stage. WSP showed depolymerization only in Toyonaka cultivar, while HSP showed depolymerization in Pajaro and Toyonaka cultivars. A slight depolymerization was observed in hemicelluloses extracted from any of three cultivars.  相似文献   
14.
This is the first report of the avian assemblage in the study area of Dutse, Nigeria. In addition to recording bird species, the effects of season, dominant vegetation structure, locality and anthropogenic activities on bird abundance, species richness and diversity were investigated. Using the point transect method, 264 points on 48 km of transect were used to count birds between 06:30 and 11:00 from August 2015 to February 2016. A total of 122 bird species of 41 families were recorded. Highest bird species richness was recorded in Warwade, highest abundance in Model, and highest diversity in Malamawa. The dry season and woodland habitat showed higher bird species richness, abundance and diversity than the wet season and shrubland habitat. Tree density was more important in increasing bird abundance than shrub density. Small-scale anthropogenic activities and habitat modification, such as farming, grazing, wood removal and human interference did not appear to have impacted the birds; however, loss of high tree-density woodland habitats may pose a major threat to the bird community in Dutse. The presence of birds of concern in the area suggests the need for conservation efforts of avifauna and as well as the forested habitats in Dutse.  相似文献   
15.
The ability of eukaryotes to adapt to an extreme range of temperatures is critically important for survival. Although adaptation to extreme high temperatures is well understood, reflecting the action of molecular chaperones, it is unclear whether these molecules play a role in survival at extremely low temperatures. The recent genome sequencing of the yeast Glaciozyma antarctica, isolated from Antarctic sea ice near Casey Station, provides an opportunity to investigate the role of molecular chaperones in adaptation to cold temperatures. We isolated a G. antarctica homologue of small heat shock protein 20 (HSP20), GaSGT1, and observed that the GaSGT1 mRNA expression in G. antarctica was markedly increased following culture exposure at low temperatures. Additionally, we demonstrated that GaSGT1 overexpression in Escherichia coli protected these bacteria from exposure to both high and low temperatures, which are lethal for growth. The recombinant GaSGT1 retained up to 60 % of its native luciferase activity after exposure to luciferase-denaturing temperatures. These results suggest that GaSGT1 promotes cell thermotolerance and employs molecular chaperone-like activity toward temperature assaults.  相似文献   
16.
A gene encoding endochitinase from Trichoderma virens UKM-1 was cloned and expressed in E. coli BL21 (DE3). Both the endochitinase gene and its cDNA sequences were obtained. The endochitinase gene encodes 430 amino acids from an open reading frame comprising of 1,690 bp nucleotide sequence with three introns. The endochitinase was expressed as soluble and active enzyme at 20°C when induced with 1 mM IPTG. Maximum activity was observed at 4 h of post-induction time. SDS-PAGE showed that the purified endochitinase exhibited a single band with molecular weight of 42 kDa. Biochemical characterization of the enzyme displayed a near neutral pH characteristic with an optimum pH at 6.0 and optimum temperature at 50°C. The enzyme is stable between pH 3.0–7.0 and is able to retain its activity from 30 to 60°C. The presence of Mg2+ and Ca2+ ions increased the enzyme activity up to 20%. The purified enzyme has a strong affinity towards colloidal chitin and low effect on ethyl cellulose and D-cellubiose which are non-chitin related substrates. HPLC analysis from the chitin hydrolysis showed the release of (GlcNAc)3, (GlcNAc)2 and GlcNAc, in which (GlcNAc)2 was the main product.  相似文献   
17.
Low reaction yields and the high cost of obtaining a single type of pure CD make γ-CD costly. Using rational design and with the aid of 3D modeling structures, recombinant CGTase from Bacillus sp. G1 was molecularly engineered with the aim of producing a higher percentage of γ-CD. A single mutation at subsite −3, denoted H43T, was found to increase γ-CD production from 10% to approximately 39% using tapioca starch. This novel increment was probably the result of reduced steric hindrance to the formation of γ-CD because of the shortened side chain together with the shortened loop at positions 86–89, at substrate-binding subsite −3. A mutation (Tyr188 → Trp) and a deletion at loop 139–144 showed little effect on product specificity; however, mutagenesis at these sites affected cyclization, coupling and hydrolysis activities as well as the kinetic properties of the mutant CGTase. Based on rational design, three further mutations of the mutant H43T (denoted H43T/Δ(139–144)/S134T/A137V/L138D/V139I, H43T/S85G and H43T/Y87F) were constructed and produced γ-CD with yields of 20%, 20% and 39%, respectively. The mutant H43T/Δ(139–144)/S134T/A137V/L138D/V139I had very low cyclization and coupling activities, however their hydrolysis activity was retained. Double mutation (H43T/S85G) caused the enzyme to exhibit higher starch hydrolysis activity, approximately 26 times higher than the native CGTase G1. Although the mutants H43T and H43T/Y87F could produce the same percentage (39%) of γ-CD, the latter was more efficient as the total amount of CD produced was higher based on the Vmax and kcat values.  相似文献   
18.
Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium–proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes.  相似文献   
19.
Numerous bacteria in and on its external parts protect the human body from harmful threats. This study aimed to investigate the potential beneficial effects of the vaginal ecosystem microbiota. A type of bacteria was isolated from vaginal secretions of adolescent and young adult women, cultured on an appropriate specific culture medium, and then molecularly identified through 16S rDNA gene sequencing. Results of 16S rDNA sequencing revealed that the isolate belongs to the Lactobacillus plantarum species. The isolated strain exhibited probiotic properties such as low pH and high bile salt concentration tolerance, antibiotic susceptibility and antimicrobial activity against some pathogenic bacteria. The anticancer effects of the strain on human cancer cell lines (cervical, HeLa; gastric, AGS; colon, HT‐29; breast, MCF‐7) and on a human normal cell line (human umbilical vein endothelial cells [HUVEC]) were investigated. Toxic side effects were assessed by studying apoptosis in the treated cells. The strain exhibited desirable probiotic properties and remarkable anticancer activity against the tested human cancer cell lines (P ≤ 0.05) with no significant cytotoxic effects on HUVEC normal cells (P ≤ 0.05). Overall, the isolated strain showed favorable potential as a bioactive therapeutic agent. Therefore, this strain should be subjected to the other required tests to prove its suitability for clinical therapeutic application.  相似文献   
20.
Antifreeze proteins (AFPs) are proteins with affinity towards ice and contribute to the survival of psychrophiles in subzero environment. Limited studies have been conducted on how AFPs from psychrophilic yeasts interact with ice. In this study, we describe the functional properties of an antifreeze protein from a psychrophilic Antarctic yeast, Glaciozyma antarctica. A cDNA encoding the antifreeze protein, AFP4, from G. antarctica PI12 was amplified from the mRNA extracted from cells grown at 4 °C. Sequence characterisation of Afp4 showed high similarity to fungal AFPs from Leucosporidium sp. AY30, LeIBP (93 %). The 786-bp cDNA encodes a 261-amino-acid protein with a theoretical pI of 4.4. Attempts to produce the recombinant Afp4 in Escherichia coli resulted in the formation of inclusion bodies (IB). The IB were subsequently denatured and refolded by dilution. Gel filtration confirmed that the refolded recombinant Afp4 is monomeric with molecular mass of ~25 kDa. Thermal hysteresis (TH) and recrystallisation inhibition assays confirmed the function of Afp4 as an antifreeze protein. In the presence of Afp4, ice crystals were modified into hexagonal shapes with TH values of 0.08 °C and smaller ice grains were observed compared with solutions without AFP. Structural analyses via homology modelling showed that Afp4 folds into β-helices with three distinct faces: a, b and c. Superimposition analyses predicted the b-face as the ice-binding surface of Afp4, whereby the mechanism of interaction is driven by hydrophobic interactions and the flatness of surface. This study may contribute towards an understanding of AFPs from psychrophilic yeasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号