首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   3篇
  58篇
  2024年   1篇
  2021年   3篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   10篇
  2010年   3篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1977年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
11.
12.
13.
Angiosperm resurrection plants exhibit poikilo‐ or homoiochlorophylly as a response to water deficit. Both strategies are generally considered as effective mechanisms to reduce oxidative stress associated with photosynthetic activity under water deficiency. The mechanism of water deficit‐induced chlorophyll (Chl) degradation in resurrection plants is unknown but has previously been suggested to occur as a result of non‐enzymatic photooxidation. We investigated Chl degradation during dehydration in both poikilochlorophyllous (Xerophyta viscosa) and homoiochlorophyllous (Craterostigma pumilum) species. We demonstrate an increase in the abundance of PHEOPHORBIDE a OXYGENASE (PAO), a key enzyme of Chl breakdown, together with an accumulation of phyllobilins, that is, products of PAO‐dependent Chl breakdown, in both species. Phyllobilins and PAO levels diminished again in leaves from rehydrated plants. We conclude that water deficit‐induced poikilochlorophylly occurs via the well‐characterized PAO/phyllobilin pathway of Chl breakdown and that this mechanism also appears conserved in a resurrection species displaying homoiochlorophylly. The roles of the PAO/phyllobilin pathway during different plant developmental processes that involve Chl breakdown, such as leaf senescence and desiccation, fruit ripening and seed maturation, are discussed.  相似文献   
14.
15.
Insect attraction to host plants may be partly mediated by visual stimuli. In the present study, the responses of adult Hycleus apicicornis (Guér.) (Coleoptera: Meloidae) to plant models of different colours, different combinations of two colours, or three hues of blue of different shapes are compared. Single‐colour models comprised the colours sky blue, bright green, yellow, red, white and black. Sky blue (reflecting light in the 440–500 nm region) is the most attractive, followed by white, which reflects light over a broader range (400–700 nm). On landing on sky blue targets, beetles exhibit feeding behaviour immediately. When different hues of blue (of different shapes) are compared, sky blue is preferred over turquoise, followed by dark blue, indicating that H. apicicornis is more attracted to lighter hues of blue than to darker ones. No significant differences are found between the three shapes (circle, square and triangle) tested, suggesting that reflectance associated with colour could be a more important visual cue than shape for host location by H. apicicornis. The preference of H. apicicornis for sky blue can be exploited in designing an attractive trap for its management.  相似文献   
16.
Aspartate transcarbamoylase and dihydroorotase, enzymes that catalyze the second and third step in de novo pyrimidine biosynthesis, are associated in dodecameric complexes in Aquifex aeolicus and many other organisms. The architecture of the dodecamer is ideally suited to channel the intermediate, carbamoyl aspartate from its site of synthesis on the ATC subunit to the active site of DHO, which catalyzes the next step in the pathway, because both reactions occur within a large, internal solvent‐filled cavity. Channeling usually requires that the reactions of the enzymes are coordinated so that the rate of synthesis of the intermediate matches its rate of utilization. The linkage between the ATC and DHO subunits was demonstrated by showing that the binding of the bisubstrate analog, N‐phosphonacetyl‐L ‐aspartate to the ATC subunit inhibits the activity of the distal DHO subunit. Structural studies identified a DHO loop, loop A, interdigitating between the ATC domains that would be expected to interfere with domain closure essential for ATC catalysis. Mutation of the DHO residues in loop A that penetrate deeply between the two ATC domains inhibits the ATC activity by interfering with the normal reciprocal linkage between the two enzymes. Moreover, a synthetic peptide that mimics that part of the DHO loop that binds between the two ATC domains was found to be an allosteric or noncompletive ATC inhibitor (Ki = 22 μM). A model is proposed suggesting that loop A is an important component of the functional linkage between the enzymes.  相似文献   
17.
18.
Flowers of the genus Arum are known to attract dung‐breeding flies and beetles through olfactory deceit. In addition to this strategy, the genus has evolved several other pollination mechanisms. The present study aimed to characterize the pollination strategies of the Cretan Arum species by investigating the flowering phenology, thermogeny, inflorescence odours, and the pollinating fauna. The results obtained show that Arum cyrenaicum and Arum concinnatum emit a strong dung smell and exhibit the distinctive features associated with this pollination syndrome. Both species are highly thermogenic, have a similar odour profile and attract small‐bodied Diptera. Although sharing the same habitat, these two plant species are never found growing sympatrically as a result of the early blooming period of A. cyrenaicum. By contrast, Arum creticum and Arum idaeum have evolved a more traditional and mutually beneficial pollination mechanism. The stinking smell has been replaced by a more flower‐like odour that attracts bees (Lasioglossum sp.) and, occasionally, bugs (Dionconotus cruentatus). Although attracting the same pollinator, the main compound present in the odour of A. creticum is different from that of A. idaeum. Principal component analysis (PCA), based on physiologically active components of the flower odours determined by testing on the antenna of the Lasioglossum bee, revealed two different clusters, indicating that pollinators can potentially discriminate between the odours of the two species. A further PCA on the main floral odour volatiles as identified by gas chroatography‐mass spectroscopy from all the Arum species under investigation displayed odour‐based similarities and differences among the species. The PCA‐gas chomotography‐electroantennographic detection active peaks analysis showed that the two species, A. creticum and A. idaeum, form two groups and are clearly separated from A. cyrenaicum and A. concinnatum, which, conversely, cluster together. The evolutionary forces and selective pressures leading to diversification of pollination mechanisms in the Cretan Arum spp. are discussed. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 991–1001.  相似文献   
19.
We previously reported intense pial cerebral collateralization and arteriogenesis in a mild and lean model of type 2 diabetes (T2D), Goto-Kakizaki (GK) rats. Increased cerebral neovascularization differed regionally and was associated with poor vessel wall maturity. Building upon these findings, the goals of this study were to determine whether a) glycemic control prevents this erratic cerebral neovascularization in the GK model, and b) this pathological neovascularization pattern occurs in Leprdb/db model, which is the most commonly used model of T2D for studies involving cerebral complications of diabetes. Vascular volume, surface area and structural parameters including microvessel/macrovessel ratio, non-FITC (fluorescein) perfusing vessel abundance, vessel tortuosity, and branch density were measured by 3D reconstruction of FITC stained vasculature in GK rats or Leprdb/db mice. GK rats exhibited an increase in all of these parameters, which were prevented by glycemic control with metformin. In Leprdb/db mice, microvascular density was increased but there was no change in nonFITC-perfusing vessels. Increased PA branch density was associated with reduced branch diameter. These results suggest that T2D leads to cerebral neovascularization and remodeling but some structural characteristics of newly formed vessels differ between these models of T2D. The prevention of dysfunctional cerebral neovascularization by early glucose control suggests that hyperglycemia is a mediator of this response.  相似文献   
20.
Kinetics of Na(+) transport in necturus proximal tubule   总被引:4,自引:4,他引:0       下载免费PDF全文
The dependence of proximal tubular sodium and fluid readsorption on the Na(+) concentration of the luminal and peritubular fluid was studied in the perfused necturus kidney. Fluid droplets, separated by oil from the tubular contents and identical in composition to the vascular perfusate, were introduced into proximal tubules, reaspirated, and analyzed for Na(+) and [(14)C]mannitol. In addition, fluid transport was measured in short-circuited fluid samples by observing the rate of change in length of the split droplets in the tubular lumen. Both reabsorptive fluid and calculated Na fluxes were simple, storable functions of the perfusate Na(+) concentration (K(m) = 35-39 mM/liter, V(max) = 1.37 control value). Intracellular Na(+), determined by tissue analysis, and open-circuit transepithelial electrical potential differences were also saturable functions of extracellular Na(+). In contrast, net reabsorptive fluid and Na(+) fluxes were linearly dependent on intracellular Na(+) and showed no saturation, even at sharply elevated cellular sodium concentrations. These concentrations were achieved by addition of amphotericin B to the luminal perfusate, a maneuver which increased the rate of Na(+) entry into the tubule cells and caused a proportionate rise in net Na(+) flux. It is concluded that active peritubular sodium transport in proximal tubule cells of necturus is normally unsaturated and remains so even after amphotericin-induced enhancement of luminal Na(+) entry. Transepithelial movement of NaCl may be described by a model with a saturable luminal entry step of Na(+) or NaCl into the cell and a second, unsaturated active transport step of Na(+) across the peritubular cell boundary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号