全文获取类型
收费全文 | 749篇 |
免费 | 58篇 |
国内免费 | 2篇 |
专业分类
809篇 |
出版年
2024年 | 1篇 |
2023年 | 12篇 |
2022年 | 19篇 |
2021年 | 43篇 |
2020年 | 26篇 |
2019年 | 34篇 |
2018年 | 34篇 |
2017年 | 28篇 |
2016年 | 51篇 |
2015年 | 60篇 |
2014年 | 71篇 |
2013年 | 57篇 |
2012年 | 70篇 |
2011年 | 55篇 |
2010年 | 43篇 |
2009年 | 25篇 |
2008年 | 31篇 |
2007年 | 27篇 |
2006年 | 22篇 |
2005年 | 14篇 |
2004年 | 14篇 |
2003年 | 9篇 |
2002年 | 7篇 |
2001年 | 5篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 3篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 8篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1976年 | 2篇 |
1974年 | 2篇 |
1966年 | 2篇 |
排序方式: 共有809条查询结果,搜索用时 15 毫秒
101.
Bräutigam A Shrestha RP Whitten D Wilkerson CG Carr KM Froehlich JE Weber AP 《Journal of biotechnology》2008,136(1-2):44-53
Proteomics is a valuable tool for establishing and comparing the protein content of defined tissues, cell types, or subcellular structures. Its use in non-model species is currently limited because the identification of peptides critically depends on sequence databases. In this study, we explored the potential of a preliminary cDNA database for the non-model species Pisum sativum created by a small number of massively parallel pyrosequencing (MPSS) runs for its use in proteomics and compared it to comprehensive cDNA databases from Medicago truncatula and Arabidopsis thaliana created by Sanger sequencing. Each database was used to identify proteins from a pea leaf chloroplast envelope preparation. It is shown that the pea database identified more proteins with higher accuracy, although the sequence quality was low and the sequence contigs were short compared to databases from model species. Although the number of identified proteins in non-species-specific databases could potentially be increased by lowering the threshold for successful protein identifications, this strategy markedly increases the number of wrongly identified proteins. The identification rate with non-species-specific databases correlated with spectral abundance but not with the predicted membrane helix content, and strong conservation is necessary but not sufficient for protein identification with a non-species-specific database. It is concluded that massively parallel sequencing of cDNAs substantially increases the power of proteomics in non-model species. 相似文献
102.
103.
Joram D. Mul Eoghan O’Duibhir Yogendra B. Shrestha Arjen Koppen Peter Vargovi? Pim W. Toonen Eleen Zarebidaki Richard Kvetnansky Eric Kalkhoven Edwin Cuppen Timothy J. Bartness 《PloS one》2013,8(3)
The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number) throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive) in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood. 相似文献
104.
Yufeng Li Rong Ni Wei Song Wenshuo Shao Sadeep Shrestha Sushma Ahmad Coleen K. Cunningham Patricia M. Flynn Bill G. Kapogiannis Craig M. Wilson Jianming Tang 《Human genetics》2009,126(5):685-696
To confirm and refine associations of human leukocyte antigen (HLA) genotypes with variable antibody (Ab) responses to hepatitis B vaccination, we have analyzed 255 HIV-1 seropositive (HIV+) youth and 80 HIV-1 seronegatives (HIV?) enrolled into prospective studies. In univariate analyses that focused on HLA-DRB1, -DQA1, and -DQB1 alleles and haplotypes, the DRB1*03 allele group and DRB1*0701 were negatively associated with the responder phenotype (serum Ab concentration ≥ 10 mIU/mL) (P = 0.026 and 0.043, respectively). Collectively, DRB1*03 and DRB1*0701 were found in 42 (53.8%) out of 78 non-responders (serum Ab <10 mIU/mL), 65 (40.6%) out of 160 medium responders (serum Ab 10–1,000 mIU/mL), and 27 (27.8%) out of 97 high responders (serum Ab >1,000 mIU/mL) (P < 0.001 for trend). Meanwhile, DRB1*08 was positively associated with the responder phenotype (P = 0.010), mostly due to DRB1*0804 (P = 0.008). These immunogenetic relationships were all independent of non-genetic factors, including HIV-1 infection status and immunodeficiency. Alternative analyses confined to HIV+ youth or Hispanic youth led to similar findings. In contrast, analyses of more than 80 non-coding, single nucleotide polymorphisms within and beyond the three HLA class II genes revealed no clear associations. Overall, several HLA-DRB1 alleles were major predictors of differential Ab responses to hepatitis B vaccination in youth, suggesting that T-helper cell-dependent pathways mediated through HLA class II antigen presentation are critical to effective immune response to recombinant vaccines. 相似文献
105.
CYP704B1 Is a Long-Chain Fatty Acid ω-Hydroxylase Essential for Sporopollenin Synthesis in Pollen of Arabidopsis 下载免费PDF全文
Anna A. Dobritsa Jay Shrestha Marc Morant Franck Pinot Michiyo Matsuno Robert Swanson Birger Lindberg M?ller Daphne Preuss 《Plant physiology》2009,151(2):574-589
Sporopollenin is the major component of the outer pollen wall (exine). Fatty acid derivatives and phenolics are thought to be its monomeric building blocks, but the precise structure, biosynthetic route, and genetics of sporopollenin are poorly understood. Based on a phenotypic mutant screen in Arabidopsis (Arabidopsis thaliana), we identified a cytochrome P450, designated CYP704B1, as being essential for exine development. CYP704B1 is expressed in the developing anthers. Mutations in CYP704B1 result in impaired pollen walls that lack a normal exine layer and exhibit a characteristic striped surface, termed zebra phenotype. Heterologous expression of CYP704B1 in yeast cells demonstrated that it catalyzes ω-hydroxylation of long-chain fatty acids, implicating these molecules in sporopollenin synthesis. Recently, an anther-specific cytochrome P450, denoted CYP703A2, that catalyzes in-chain hydroxylation of lauric acid was also shown to be involved in sporopollenin synthesis. This shows that different classes of hydroxylated fatty acids serve as essential compounds for sporopollenin formation. The genetic relationships between CYP704B1, CYP703A2, and another exine gene, MALE STERILITY2, which encodes a fatty acyl reductase, were explored. Mutations in all three genes resulted in pollen with remarkably similar zebra phenotypes, distinct from those of other known exine mutants. The double and triple mutant combinations did not result in the appearance of novel phenotypes or enhancement of single mutant phenotypes. This implies that each of the three genes is required to provide an indispensable subset of fatty acid-derived components within the sporopollenin biosynthesis framework.The biopolymer sporopollenin is the major component of the outer walls in pollen and spores (exines). It is highly resistant to nonoxidative physical, chemical, and biological treatments and is insoluble in both aqueous and organic solvents. While the stability and resistance of sporopollenin account for the preservation of ancient pollen grains for millions of years with nearly full retention of morphology (Doyle and Hickey, 1976; Friis et al., 2001), these same qualities make it extremely difficult to study the chemical structure of sporopollenin. Thus, although the first studies on the composition of sporopollenin were reported in 1928 (Zetzsche and Huggler, 1928), the exact structure of sporopollenin remains unresolved. At present, it is thought that sporopollenin is a complex polymer primarily made of a mixture of fatty acids and phenolic compounds (Guilford et al., 1988; Wiermann et al., 2001).Fatty acids were first implicated as sporopollenin components when ozonolysis of Lycopodium clavatum and Pinus sylvestris exine yielded significant amounts of straight- and branched-chain monocarboxylic acids, characteristic fatty acid breakdown products (Shaw and Yeadon, 1966). More recently, improved purification and degradation techniques coupled with analytical methods, such as solid-state 13C-NMR spectroscopy, Fourier transform infrared spectroscopy, and 1H-NMR, have shown that sporopollenin is made up of polyhydroxylated unbranched aliphatic units and also contains small amounts of oxygenated aromatic rings and phenylpropanoids (Guilford et al., 1988; Ahlers et al., 1999; Domínguez et al., 1999; Bubert et al., 2002). Biochemical studies using thiocarbamate herbicide inhibition of the chain-elongating steps in the synthesis of long-chain fatty acids and radioactive tracer experiments provided further evidence that lipid metabolism is involved in the biosynthesis of sporopollenin (Wilwesmeier and Wiermann, 1995; Meuter-Gerhards et al., 1999).Relatively little is known about the genetic network that determines sporopollenin synthesis. However, several Arabidopsis (Arabidopsis thaliana) genes implicated in exine biosynthesis encode proteins with sequence homology to enzymes that are involved in fatty acid metabolism. Mutations in MALE STERILITY2 (MS2) eliminate exine and affect a protein with sequence similarity to fatty acyl reductases; the predicted inability of ms2 plants to reduce pollen wall fatty acids to the corresponding alcohols suggests that this reaction is a key step in sporopollenin synthesis (Aarts et al., 1997). The FACELESS POLLEN1 (FLP1) gene, whose loss causes the flp1 exine defect, encodes a protein similar to those involved in wax synthesis (Ariizumi et al., 2003). The no exine formation1 (nef1) mutant accumulates reduced levels of lipids, and the NEF1 protein was suggested to be involved in either lipid transport or the maintenance of plastid membrane integrity, including those plastids in the secretory tapetum of anthers, where many of the sporopollenin components are synthesized (Ariizumi et al., 2004). The dex2 mutant has mutations in the evolutionarily conserved anther-specific cytochrome P450, CYP703A2 (Morant et al., 2007), which catalyzes in-chain hydroxylation of saturated medium-chain fatty acids, with lauric acid (C12:0) as a preferred substrate (Morant et al., 2007). A recently described gene, ACOS5, encodes a fatty acyl-CoA synthetase that has in vitro preference for medium-chain fatty acids (de Azevedo Souza et al., 2009). Mutations in all of these genes compromise exine formation.Here, we describe an evolutionarily conserved cytochrome P450, CYP704B1, and demonstrate that this gene is essential for exine biosynthesis and plays a role different from that of CYP703A2. Heterologously expressed CYP704B1 catalyzed ω-hydroxylation of several saturated and unsaturated C14-C18 fatty acids. These results suggest the possibility that ω-hydroxylated fatty acids produced by CYP704B1, together with in-chain hydroxylated lauric acids provided by the action of CYP703A2, may serve as key monomeric aliphatic building blocks in sporopollenin formation. Analyses of the genetic relationships between CYP704B1, MS2, and CYP703A2 suggest that all three genes are involved in the same pathway within the sporopollenin biosynthesis framework. 相似文献
106.
Rama Kandasamy Meeru Gurung Anushil Thapa Susan Ndimah Neelam Adhikari David R. Murdoch Dominic F. Kelly Denise E. Waldron Katherine A. Gould Stephen Thorson Shrijana Shrestha Jason Hinds Andrew J. Pollard 《PloS one》2015,10(2)
Invasive pneumococcal disease is one of the major causes of death in young children in resource poor countries. Nasopharyngeal carriage studies provide insight into the local prevalence of circulating pneumococcal serotypes. There are very few data on the concurrent carriage of multiple pneumococcal serotypes. This study aimed to identify the prevalence and serotype distribution of pneumococci carried in the nasopharynx of young healthy Nepalese children prior to the introduction of a pneumococcal conjugate vaccine using a microarray-based molecular serotyping method capable of detecting multi-serotype carriage. We conducted a cross-sectional study of healthy children aged 6 weeks to 24 months from the Kathmandu Valley, Nepal between May and October 2012. Nasopharyngeal swabs were frozen and subsequently plated on selective culture media. DNA extracts of plate sweeps of pneumococcal colonies from these cultures were analysed using a molecular serotyping microarray capable of detecting relative abundance of multiple pneumococcal serotypes. 600 children were enrolled into the study: 199 aged 6 weeks to <6 months, 202 aged 6 months to < 12 months, and 199 aged 12 month to 24 months. Typeable pneumococci were identified in 297/600 (49·5%) of samples with more than one serotype being found in 67/297 (20·2%) of these samples. The serotypes covered by the thirteen-valent pneumococcal conjugate vaccine were identified in 44·4% of samples containing typeable pneumococci. Application of a molecular serotyping approach to identification of multiple pneumococcal carriage demonstrates a substantial prevalence of co-colonisation. Continued surveillance utilising this approach following the introduction of routine use of pneumococcal conjugate vaccinates in infants will provide a more accurate understanding of vaccine efficacy against carriage and a better understanding of the dynamics of subsequent serotype and genotype replacement. 相似文献
107.
Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy 下载免费PDF全文
108.
Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria
Shrestha A Hamilton G O'Neill E Knapp S Elkins JM 《Protein expression and purification》2012,81(1):136-143
Bacterial over-expression of kinases is often associated with high levels of auto-phosphorylation resulting in heterogeneous recombinant protein preparations or sometimes in insoluble protein. Here we present expression systems for nine kinases in Escherichia coli and, for the most heavily phosphorylated, the characterisation of factors affecting auto-phosphorylation. Experiments showed that the level of auto-phosphorylation was proportional to the rate of expression. Comparison of phosphorylation states following in vitro phosphorylation with phosphorylation states following expression in E. coli showed that the non-physiological 'hyper-phosphorylation' was occurring at sites that would require local unfolding to be accessible to a kinase active site. In contrast, auto-phosphorylation on unphosphorylated kinases that had been expressed in bacteria overexpressing λ-phosphatase was only observed on distinct exposed sites. Remarkably, the Ser/Thr kinase PLK4 auto-phosphorylated on a tyrosine residue (Tyr177) located in the activation segment. The results give support to a mechanism in which auto-phosphorylation occurs before or during protein folding. In addition, the expression systems and protocols presented will be a valuable resource to the research community. 相似文献
109.
110.
In our previous studies, we observed the biological control effect of lactic acid bacteria strains (LABs) KLF01, KLC02 and KPD03 against different plant pathogenic bacteria in vitro against Ralstonia solanacearum, and strains KLF01 and KLC02 against Pectobacterium carotovorum under greenhouse and field experiments, respectively. In this study, we observed the efficacy of these bacteria against bacterial spot pathogen (Xanthomonas campestris pv. vesicatoria) and their plant growth-promoting activities in pepper (Capsicum annuum L. var. annuum), under greenhouse and field conditions. LABs significantly (P < 0.05) reduced bacterial spot on pepper plants in comparison to untreated plants in both the greenhouse and the field experiments. The plant growth-promoting effect of LABs on pepper varied; some strains had a significant effect on growth promotion (P < 0.05) compared with untreated plants, while some showed no significant effect in the greenhouse and field experiments. Additionally, LABs were able to colonise roots, produce indole-3-acetic acid (IAA), siderophores and solubilise phosphate. These findings indicate that application of LABs could provide a promising alternative for the management of bacterial spot disease in pepper plants and could therefore be used as a healthy plant growth-promoting agent. 相似文献