首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   16篇
  国内免费   1篇
  349篇
  2024年   1篇
  2023年   10篇
  2022年   9篇
  2021年   17篇
  2020年   8篇
  2019年   10篇
  2018年   13篇
  2017年   7篇
  2016年   15篇
  2015年   22篇
  2014年   30篇
  2013年   30篇
  2012年   22篇
  2011年   34篇
  2010年   10篇
  2009年   11篇
  2008年   14篇
  2007年   11篇
  2006年   9篇
  2005年   14篇
  2004年   8篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1985年   6篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1966年   3篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
91.
Using a gastrostomy-fed (GF) rat infant "pup-in-a-cup" model, the effects of protein deprivation and supplemental glutamine (Gln) and glutamate (Glu) were examined to test the hypothesis that Gln decreases the proinflammatory response induced by LPS in the developing infant rat small intestine. Four groups of 6- to 7-day-old pups were fed a rat milk substitute (RMS), one providing 100% and three providing 25% of normal protein intake for another 6 days. Two of the 25% protein-fed groups received supplemental Gln or Glu. GF and LPS treatment blunted body growth and intestinal villus height and increased intestinal cytokine-induced neutrophil chemoattractant (CINC) mRNA in the protein-deprived, non-Gln-treated group compared with mother-fed pups (P < 0.05). Gln blunted intestinal CINC mRNA (P < 0.05), but Glu did not. Intestinal CINC peptide in the LPS-treated pups provided 100 and 25% protein was elevated approximately 13-fold compared with the mother-reared pups (P < 0.001). Gln and Glu decreased intestinal CINC peptide by 73 and 80%, respectively. GF, LPS-treated pups also had a higher level of plasma CINC peptide (P < 0.05). Gln but not Glu decreased plasma CINC peptide (P < 0.05). An approximate sixfold elevation of intestinal MPO activity in the GF, LPS-treated rats was decreased by Gln and Glu by 92% (P < 0.001) and 54% (P < 0.05), respectively. Intestinal and plasma TNF-alpha were increased in GF, LPS-treated pups (P < 0.01), and Gln and Glu both blunted this increase (P < 0.05) in the intestine but not in the plasma. The results indicate that Gln decreases the LPS-induced inflammatory response in infant rat intestine under different conditions of protein intake.  相似文献   
92.
Absolute fast converging phylogenetic reconstruction methods are provably guaranteed to recover the true tree with high probability from sequences that grow only polynomially in the number of leaves, once the edge lengths are bounded arbitrarily from above and below. Only a few methods have been determined to be absolute fast converging; these have all been developed in just the last few years, and most are polynomial time. In this paper, we compare pre-existing fast converging methods as well as some new polynomial time methods that we have developed. Our study, based upon simulating evolution under a wide range of model conditions, establishes that our new methods outperform both neighbor joining and the previous fast converging methods, returning very accurate large trees, when these other methods do poorly.  相似文献   
93.
94.
MicroRNAs (miRNAs) are key regulators of gene expression. In the brain, vital processes like neurodevelopment and neuronal functions depend on the correct expression of microRNAs. Perturbation of microRNAs in the brain can be used to model neurodegenerative diseases by modulating neuronal cell death. Currently, stereotactic injection is used to deliver miRNA knockdown agents to specific location in the brain. Here, we discuss strategies to design antagomirs against miRNA with locked nucleotide modifications (LNA). Subsequently describe a method for brain specific delivery of antagomirs, uniformly across different regions of the brain. This method is simple and widely applicable since it overcomes the surgery, associated injury and limitation of local delivery in stereotactic injections. We prepared a complex of neurotropic, cell-penetrating peptide Rabies Virus Glycoprotein (RVG) with antagomir against miRNA-29 and injected through tail vein, to specifically deliver in the brain. The antagomir design incorporated features that allow specific targeting of the miRNA and formation of non-covalent complexes with the peptide. The knock-down of the miRNA in neuronal cells, resulted in apoptotic cell death and associated behavioural defects. Thus, the method can be used for acute models of neuro-degeneration through the perturbation of miRNAs.  相似文献   
95.
96.
Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to replace their susceptible natural counterparts, and Sterile Insect technique (SIT) where males sterilized by chemical means are released to suppress female fecundity. The success of genetic modification approaches requires identification of strong drive systems to spread the desirable traits and the efficacy of SIT can be enhanced by identification of natural mating incompatibility. One such drive mechanism results from the cytoplasmic incompatibility (CI) phenomenon induced by the symbiont Wolbachia. CI can also be used to induce natural mating incompatibility between release males and natural populations. Although Wolbachia infections have been reported in tsetse, it has been a challenge to understand their functional biology as attempts to cure tsetse of Wolbachia infections by antibiotic treatment damages the obligate mutualistic symbiont (Wigglesworthia), without which the flies are sterile. Here, we developed aposymbiotic (symbiont-free) and fertile tsetse lines by dietary provisioning of tetracycline supplemented blood meals with yeast extract, which rescues Wigglesworthia-induced sterility. Our results reveal that Wolbachia infections confer strong CI during embryogenesis in Wolbachia-free (Gmm(Apo)) females when mated with Wolbachia-infected (Gmm(Wt)) males. These results are the first demonstration of the biological significance of Wolbachia infections in tsetse. Furthermore, when incorporated into a mathematical model, our results confirm that Wolbachia can be used successfully as a gene driver. This lays the foundation for new disease control methods including a population replacement approach with parasite resistant flies. Alternatively, the availability of males that are reproductively incompatible with natural populations can enhance the efficacy of the ongoing sterile insect technique (SIT) applications by eliminating the need for chemical irradiation.  相似文献   
97.
Yeast Ufd2p was the first identified E4 multiubiquitin chain assembly factor. Its vertebrate homologues later referred to as UFD2a, UBE4B or E4B were also shown to have E3 ubiquitin ligase activity. UFD2a function in the brain has been well established in vivo, and in vitro studies have shown that its activity is essential for proper condensation and segregation of chromosomes during mitosis. Here we show that 2 alternative splice forms of UFD2a, UFD2a-7 and -7/7a, are expressed sequentially during myoblast differentiation of C2C12 cell cultures and during cardiotoxin-induced regeneration of skeletal muscle in mice. UFD2a-7 contains an alternate exon 7, and UFD2a-7/7a, the larger of the 2 isoforms, contains an additional novel exon 7a. Analysis of protein or mRNA expression in mice and zebrafish revealed that a similar pattern of isoform switching occurs during developmental myogenesis of cardiac and skeletal muscle. In vertebrates (humans, rodents, zebrafish), UFD2a-7/7a is expressed only in mature striated muscle. This unique tissue specificity is further validated by the conserved presence of 2 muscle-specific splicing regulatory motifs located in the 3' introns of exons 7 and 7a. UFD2a interacts with VCP/p97, an AAA-type ATPase implicated in processes whose functions appear to be regulated, in part, through their interaction with one or more of 15 previously identified cofactors. UFD2a-7/7a did not interact with VCP/p97 in yeast 2-hybrid experiments, which may allow the ATPase to bind cofactors that facilitate its muscle-specific functions. We conclude that the regulated expression of these UFD2a isoforms most likely imparts divergent functions that are important for myogenisis.  相似文献   
98.
Among the seven serotypes (A–G), type A botulinum neurotoxin (BoNT/A) is the most prevalent etiologic agent and the most potent serotype to cause foodborne botulism, characterized by flaccid muscle paralysis. Upon ingestion, BoNT/A crosses epithelial cell barriers to reach lymphatic and circulatory systems and blocks acetylcholine release at the pre-synaptic cholinergic nerve terminals of neuromuscular junctions (NMJs) resulting in paralysis. One of the unique features of BoNT/A intoxication is its neuroparalytic longevity due to its persistent catalytic activity. The persistent presence of the toxin inside the cell can induce host cell responses. To understand the pathophysiology and host response at the cellular level, gene expression changes upon exposure of human HT-29 colon carcinoma (epithelial) and SH-SY5Y neuroblastoma cell lines to BoNT/A complex were investigated using microarray analysis. In HT-29 cells, 167 genes were up-regulated while 60 genes were down-regulated, whereas in SH-SY5Y cells about 223 genes were up-regulated and 18 genes were down-regulated. Modulation of genes and pathways involved in neuroinflammatory, ubiquitin–proteasome degradation, phosphatidylinositol, calcium signaling in SH-SY5Y cells, and genes relevant to focal adhesion, cell adhesion molecules, adherens and gap junction related pathways in HT-29 cells suggest a massive host response to BoNT/A. A clear differential response in epithelial and neuronal cells indicates that the genes affected may play a distinct role in BoNTs cellular mode of action, involving these two types of host cells.  相似文献   
99.
Although cellular signaling pathways that affect lentivirus infection have been investigated, the role of cell-cell interactions in lentiviral gene delivery remains elusive. In the course of our studies we observed that lentiviral gene transfer was a strong function of the position of epithelial cells within colonies. While peripheral cells were transduced efficiently, cells in the center of colonies were resistant to gene transfer. In addition, gene delivery was enhanced significantly under culture conditions that disrupted adherens junctions (AJ) but decreased upon AJ formation. In agreement, gene knockdown and gain-of-function approaches showed that α-catenin, a key component of the AJ complex prevented lentivirus gene transfer. Using a doxycycline regulatable system we showed that expression of dominant negative E-cadherin enhanced gene transfer in a dose-dependent manner. In addition, dissolution of AJ by doxycycline increased entry of lentiviral particles into the cell cytoplasm in a dose-dependent manner. Taken together our results demonstrate that AJ formation renders cells non-permissive to lentiviral gene transfer and may facilitate development of simple means to enhance gene delivery or combat virus infection.  相似文献   
100.
Responses of selected neuroregulatory proteins that promote (Caspase 3 and Bax) or inhibit (Bcl-2, high Bcl-2/Bax ratio) apoptotic cell death were measured in the brain of piglets subjected to precisely controlled hypoxic and ischemic insults: 1 h hypoxia (decreasing FiO2 from 21 to 6%) or ischemia (ligation of carotid arteries and hemorrhage), followed by 0, 2 and 4 h recovery with 21% FiO2. Protein expression was measured in cortex, hippocampus and striatum by Western blot. There were no significant differences in expression of Caspase-3 between sham operated, hypoxic and ischemic groups. There were significant regional differences in expression of Bcl-2 and Bax in response to hypoxia and ischemia. The changes in Bcl-2/Bax ratio were similar for hypoxia and ischemia except for striatum at zero time recovery, with ischemia giving lower ratios than hypoxia. The Bcl-2/Bax ratio was also lower for the striatum than for the other regions of the brain, suggesting this region is the more susceptible to apoptotic injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号