首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   43篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2017年   8篇
  2016年   10篇
  2015年   18篇
  2014年   24篇
  2013年   17篇
  2012年   20篇
  2011年   16篇
  2010年   16篇
  2009年   14篇
  2008年   6篇
  2007年   9篇
  2006年   18篇
  2005年   14篇
  2004年   17篇
  2003年   10篇
  2002年   13篇
  2001年   21篇
  2000年   22篇
  1999年   15篇
  1998年   9篇
  1997年   8篇
  1996年   11篇
  1994年   3篇
  1992年   8篇
  1991年   10篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   9篇
  1985年   3篇
  1984年   5篇
  1983年   10篇
  1982年   4篇
  1981年   3篇
  1980年   7篇
  1979年   2篇
  1978年   6篇
  1977年   5篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1970年   5篇
  1969年   3篇
  1967年   2篇
  1965年   3篇
排序方式: 共有451条查询结果,搜索用时 31 毫秒
101.
The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-1R). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1-6; 22-31 kDa) that via high affinity binding to the IGFs (KD ∼ 300-700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in Escherichia coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP.  相似文献   
102.
103.

Background  

The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown.  相似文献   
104.
105.
目的 制备一种新型的心肌急性缺血再灌注损伤模型,以探讨一种更符合临床实际需求的实验方法.方法 将20只雌性SD(Sprague-Dawley)大鼠随机分成2组(对照组、实验组),采用结扎主动脉根部引起心肌缺血5min再灌注30 min建立心肌急性缺血再灌注模型;通过应用透射电镜观察心肌细胞超微结构的改变,同时检测心肌组织匀浆丙二醛(Maleic Dialdehyde,MDA)含量、超氧化物歧化酶(Superoxide Dismutase,SOD)活力.结果 透射电镜下超微结构显示实验组较对照组明显加重了心肌组织结构和线粒体的损害;实验组心肌组织MDA明显高于对照组(P<0.01),而SOD明显低于对照组(P<0.01).结论 本实验成功建立了方法简便、易于操作、取材范围广泛的心肌缺血再灌注损伤模型,为心肌缺血再灌注损伤研究提供了一种更为可行的模型.  相似文献   
106.
107.
Cardiotoxicity of the cancer therapeutic agent imatinib mesylate   总被引:17,自引:0,他引:17  
Imatinib mesylate (Gleevec) is a small-molecule inhibitor of the fusion protein Bcr-Abl, the causal agent in chronic myelogenous leukemia. Here we report ten individuals who developed severe congestive heart failure while on imatinib and we show that imatinib-treated mice develop left ventricular contractile dysfunction. Transmission electron micrographs from humans and mice treated with imatinib show mitochondrial abnormalities and accumulation of membrane whorls in both vacuoles and the sarco- (endo-) plasmic reticulum, findings suggestive of a toxic myopathy. With imatinib treatment, cardiomyocytes in culture show activation of the endoplasmic reticulum (ER) stress response, collapse of the mitochondrial membrane potential, release of cytochrome c into the cytosol, reduction in cellular ATP content and cell death. Retroviral gene transfer of an imatinib-resistant mutant of c-Abl, alleviation of ER stress or inhibition of Jun amino-terminal kinases, which are activated as a consequence of ER stress, largely rescues cardiomyocytes from imatinib-induced death. Thus, cardiotoxicity is an unanticipated side effect of inhibition of c-Abl by imatinib.  相似文献   
108.
Ceramide, a product of sphingomyelin turnover, is a lipid secondmessenger that mediates diverse signaling pathways, including thoseleading to cell cycle arrest and differentiation. The mechanism(s) bywhich ceramide signals downstream events have not been fully elucidated. Here we show that, in Xenopuslaevis oocytes, ceramide-induced maturation isassociated with the release of intracellular calcium stores. Ceramidecaused a dose-dependent elevation in the second messenger inositol1,4,5-trisphosphate (IP3) viaactivation of Gq/11 andphospholipase C-X. Elevation ofIP3, in turn, activated theIP3 receptor calcium releasechannel on the endoplasmic reticulum, resulting in a rise incytoplasmic calcium. Thus our study demonstrates that cross talkbetween the ceramide and phosphoinositide signaling pathways modulatesintracellular calcium homeostasis.

  相似文献   
109.
The Wilson disease protein (WND) is a transport ATPase involved in copper delivery to the secretory pathway. Mutations in WND and its homolog, the Menkes protein, lead to genetic disorders of copper metabolism. The WND and Menkes proteins are distinguished from other P-type ATPases by the presence of six soluble N-terminal metal-binding domains containing a conserved CXXC metal-binding motif. The exact roles of these domains are not well established, but possible functions include exchanging copper with the metallochaperone Atox1 and mediating copper-responsive cellular relocalization. Although all six domains can bind copper, genetic and biochemical studies indicate that the domains are not functionally equivalent. One way the domains could be tuned to perform different functions is by having different affinities for Cu(I). We have used isothermal titration calorimetry to measure the association constant (K(a)) and stoichiometry (n) values of Cu(I) binding to the WND metal-binding domains and to their metallochaperone Atox1. The association constants for both the chaperone and target domains are approximately 10(5) to 10(6) m(-1), suggesting that the handling of copper by Atox1 and copper transfer between Atox1 and WND are under kinetic rather than thermodynamic control. Although some differences in both n and K(a) values are observed for variant proteins containing less than the full complement of six metal-binding domains, the data for domains 1-6 were best fitted with a single site model. Thus, the individual functions of the six WND metal-binding domains are not conferred by different Cu(I) affinities but instead by fold and electrostatic surface properties.  相似文献   
110.
Arsenic is a wide-spread contaminant of soils and sediments, andmany watersheds worldwide regularly experience severe arsenic loading. While the toxicityof arsenic to plants and animals is well recognized, the geochemical and biological transformationsthat alter its bioavailability in the environment are multifaceted and remain poorly understood.This communication provides a brief overview of our current understanding of the biogeochemistryof arsenic in circumneutral freshwater sediments, placing special emphasis on microbialtransformations. Arsenic can reside in a number of oxidation states and complex ions. The commoninorganic aqueous species at circumneutral pH are the negatively charged arsenates(H2AsVO4 - and HasVO4 2-) and zero-charged arsenite(H3AsIIIO3 0). Arsenic undergoes diagenesis in response to both physicaland biogeochemical processes. It accumulates in oxic sediments by adsorption on and/orco-precipitation with hydrous iron and manganese oxides. Burial of such sediments in anoxic/suboxicenvironments favors their reduction, releasing Fe(II), Mn(II) and associatedadsorbed/coprecipitated As. Upward advection can translocate these cations and As into theoverlying oxic zone where they may reprecipitate. Alternatively, As may be repartitioned tothe sulfidic phase, forming precipitates such as arsenopyrite and orpiment. Soluble and adsorbedAs species undergo biotic transformations. As(V) can serve as the terminal electronacceptor in the biological oxidation of organic matter, and the limited number of microbes capableof this transformations are diverse in their phylogeny and physiology. Fe(III)-respiring bacteriacan mobilize both As(V) and As(III) bound to ferric oxides by the reductive dissolution ofiron-arsenate minerals. SO4 2--reducing bacteria canpromote deposition of As(III) as sulfide minerals via their production of sulfide. A limited number of As(III)-oxidizing bacteriahave been identified, some of which couple this reaction to growth. Lastly, prokaryotic andeukaryotic microbes can alter arsenic toxicity either by coupling cellular export to its reductionor by converting inorganic As to organo-arsenical compounds. The degree to which each ofthese metabolic transformations influences As mobilization or sequestration in differentsedimentary matrices remains to be established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号