首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2010篇
  免费   192篇
  2022年   17篇
  2021年   35篇
  2020年   15篇
  2019年   24篇
  2018年   14篇
  2017年   21篇
  2016年   40篇
  2015年   82篇
  2014年   75篇
  2013年   90篇
  2012年   165篇
  2011年   125篇
  2010年   78篇
  2009年   66篇
  2008年   109篇
  2007年   108篇
  2006年   85篇
  2005年   83篇
  2004年   115篇
  2003年   83篇
  2002年   102篇
  2001年   54篇
  2000年   22篇
  1999年   26篇
  1998年   22篇
  1997年   17篇
  1996年   23篇
  1995年   22篇
  1994年   21篇
  1993年   23篇
  1992年   23篇
  1991年   21篇
  1990年   19篇
  1989年   22篇
  1988年   20篇
  1987年   19篇
  1986年   17篇
  1985年   17篇
  1984年   17篇
  1983年   18篇
  1982年   15篇
  1981年   17篇
  1980年   13篇
  1979年   17篇
  1978年   12篇
  1977年   14篇
  1976年   17篇
  1975年   12篇
  1973年   11篇
  1972年   13篇
排序方式: 共有2202条查询结果,搜索用时 15 毫秒
951.
952.
953.
954.
Focal Adhesion Kinase (FAK) activity is controlled by growth factors and adhesion signals in tumor cells. The scaffolding protein RACK1 (receptor for activated C kinases) integrates insulin-like growth factor I (IGF-I) and integrin signaling, but whether RACK1 is required for FAK function is unknown. Here we show that association of FAK with RACK1 is required for both FAK phos pho ryl a tion and dephos pho ryl a tion in response to IGF-I. Suppression of RACK1 by small interfering RNA ablates FAK phos pho ryl a tion and reduces cell adhesion, cell spreading, and clonogenic growth. Peptide array and mutagenesis studies localize the FAK binding interface to blades I-III of the RACK1 β-propeller and specifically identify a set of basic and hydrophobic amino acids (Arg-47, Tyr-52, Arg-57, Arg-60, Phe-65, Lys-127, and Lys-130) as key determinants for association with FAK. Mutation of tyrosine 52 alone is sufficient to disrupt interaction of RACK1 with FAK in cells where endogenous RACK1 is suppressed by small interfering RNA. Cells expressing a Y52F mutant RACK1 are impaired in adhesion, growth, and foci formation. Comparative analyses of homology models and crystal structures for RACK1 orthologues suggest a role for Tyr-52 as a site for phos pho ryl a tion that induces conformational change in RACK1, switching the protein into a FAK binding state. Tyrosine 52 is further shown to be phos pho ryl a ted by c-Abl kinase, and the c-Abl inhibitor STI571 disrupts FAK interaction with RACK1. We conclude that FAK association with RACK1 is regulated by phos pho ryl a tion of Tyr-52. Our data reveal a novel mechanism whereby IGF-I and c-Abl control RACK1 association with FAK to facilitate adhesion signaling.RACK12 is a tryptophan-aspartate (WD) repeat containing protein that acts as a scaffolding protein in a wide array of signaling events (1, 2). It has been reported to both regulate and promote cell migration in different cell types (35). RACK1 scaffolds proteins at focal adhesions and is capable of mediating both focal adhesion assembly and disassembly (4, 6, 7). RACK1 also scaffolds core kinases of the ERK pathway in response to adhesion signals and modulates the phosphorylation of focal adhesion proteins including focal adhesion kinase (FAK) and paxillin (8, 9). In transformed cells RACK1 integrates signaling from the IGF-I receptor (IGF-IR) and β1 integrin by forming a scaffolding complex that includes these receptors as well as signaling molecules that promote cell migration (5, 10, 11). Cooperation between IGF-IR and β1 integrin signaling is essential for growth of certain tumors (12), and we propose that RACK1 has an important role in this.The interaction of RACK1 with the IGF-IR requires integrins to be ligated and also requires a domain in the C terminus of the IGF-IR that is essential for IGF-IR function in anchorage-independent growth, cell survival, and cell migration (13, 14). Ligand-mediated activation of the IGF-IR leads to recruitment of certain proteins to RACK1 such as IRS-1, β1 integrin, and dissociation of other proteins from RACK1 such as PP2A and Src. Competitive binding to RACK1 occurs for some of these proteins. For example, IGF-I-mediated dissociation of PP2A from RACK1 is required for recruitment of β1 integrin, and both PP2A and β1 integrin compete for binding to tyrosine 302 in RACK1 (5, 15).RACK1 is located in areas of cell protrusion that are rich in paxillin (4, 7) and can increase the phosphorylation of FAK (7). FAK is a well characterized kinase in mediating integrin signaling and is associated with the enhanced migratory potential of several cancer cell types (1618). FAK is phosphorylated on tyrosine 397 in response to the clustering of integrins (for review, see Ref. 19) or by activation of the EGF and platelet-derived growth factor receptors (2023). This results in recruitment of Src and subsequent phosphorylation of target proteins that are associated with focal adhesion formation and activation of mitogen-activated protein kinase pathways. FAK becomes rapidly dephosphorylated when cells are detached, and this is thought to be essential for focal adhesion dissolution and cell migration. FAK dephosphorylation can be stimulated by IGF-I (5, 2427). Interestingly, we have observed that IGF-I-mediated dephosphorylation of FAK is enhanced in cells overexpressing RACK1, which also have enhanced migratory potential and increased activation of mitogen-activated protein kinase pathways (28). However, it is not known how the phosphorylation and subsequent dephosphorylation of FAK are coordinated. In particular, the role of RACK1 in regulation of FAK phosphorylation remains undefined. Here we investigated this in the context of IGF-I and adhesion signaling by determining the role of RACK1 in FAK function.  相似文献   
955.
956.
957.
Simian varicella virus (SVV; Cercopithecine herpesvirus 9) is a naturally occurring herpesvirus of nonhuman primates. Here we present the clinical, pathologic, and virologic findings from 2 cases of SVV in adult female pigtailed macaques (Macaca nemestrina). The initial case presented with hyperthermia and a diffuse inguinal rash which spread centripetally, progressing to vesiculoulcerative dermatitis of the trunk, face, and extremities. At 96 h after presentation, the animal was anorexic and lethargic and had oral and glossal ulcerations. Euthanasia was elected in light of the macaque''s failure to respond to clinical treatment. Seven days after the first case was identified, a second macaque presented with a vesicular rash and was euthanized. Gross necropsy lesions for both cases included vesicular, ulcerative dermatitis with mucocutaneous extension and hepatic necrosis; the initial case also demonstrated necrohemorrhagic gastroenterocolitis and multifocal splenic necrosis. Histology confirmed herpetic viral infection with abundant intranuclear inclusion bodies. Immunofluorescence assays detected antibodies specific for SVV. PCR assays of vesicular fluid, tissue, and blood confirmed SVV and excluded varicella–zoster virus (Human herpesvirus 3). Serology for Macacine herpesvirus 1 (formerly Cercopithecine herpesvirus 1), poxvirus (monkeypox), and rubella was negative. Banked serum samples confirmed SVV exposure and seroconversion. Investigation into the epidemiology of the seroconversion demonstrated a SVV colony prevalence of 20%. The described cases occurred in animals with reconstituted immune systems (after total-body irradiation) and demonstrate the clinical effects of infection with an endemic infectious agent in animals with a questionable immune status.Abbreviations: IFA, immunofluorescence assay; SVV, simian varicella virus; TBI, total body irradiation; WaNPRC, Washington National Primate Research Center; VZV, varicella–zoster virus; McHv1, Macacine herpesvuris 1; SRV-2, Simian retrovirus 2 (type D)Simian varicella virus (SVV; Cercopithecine herpesvirus 9) is a naturally occurring herpesvirus of Old World primates responsible for sporadic epizootics in biomedical research facilities.2 Signs of infection include fever, vesicular skin lesions, hemorrhagic ulceration throughout the gastrointestinal tract, and multifocal hemorrhagic necrosis of the liver, spleen, lymph nodes, and endocrine organs.6,7,8 Other names for SVV include Delta herpesvirus, Liverpool vervet virus, patas herpesvirus, and Medical Lake macaque virus.16, 20-23 Like many other herpesviruses, SVV establishes persistent lifelong infections, with viral DNA detectable in neural ganglia.12 Infection with SVV does not necessarily lead to lifelong latency, and periodic reactivation of SVV may occur.3 SVV is genetically and antigenically similar to Human herpesvirus 3,2 commonly known as varicela–zoster virus (VZV), the etiologic agent of chickenpox and shingles in humans. SVV in macaques and VZV in man present with similar clinical signs; SVV has been proposed as an animal model of VZV disease in man.24 Rarely, VZV may occur in higher primates (Gorilla).18 The 2 viruses must be distinguished from one another through molecular techniques.1,410,11 Both viral infections are usually mild and self-limiting in immunocompetent hosts,4,8 reactivation and viral shedding may occur during times of stress or immunosupression.80,21,22A recent review of SVV in Old World Monkeys8 focused on SVV as a disease of nonhuman primates. This case report expands on the 2 most recent cases of SVV mentioned in that review.8 The animals described were housed in accordance with the regulations of the Animal Welfare Act and the recommendations of the Guide for the Care and Use of Laboratory Animals11 at the Washington National Primate Research Center (WaNPRC) facility in Seattle. The Institutional Animal Care and Use Committee of the University of Washington approved all aspects of the study to which the animals were assigned. The 2 clinical cases described in this report originated at the WaNPR–Seattle facility; contact animals described originated at the WaNPR–Tulane facility. When animals are relocated between the 2 facilities, they are processed through a domestic quarantine consisting of isolation for 30 d, during which time 3 tuberculin skin tests, 2 physical examinations, and 1 complete blood count and serological panel are performed. The WaNPRC–Tulane facility houses a breeding colony founded by animals relocated to Louisiana from the WaNPRC–Medical Lake facility in 1996.  相似文献   
958.
959.

Background  

Though RpoS is important for survival of pathogenic Escherichia coli in natural environments, polymorphism in the rpoS gene is common. However, the causes of this polymorphism and consequential physiological effects on gene expression in pathogenic strains are not fully understood.  相似文献   
960.
Glutamine plays a key role in intestinal growth and maintenance of gut function, and as we have shown protects the postischemic gut (Kozar RA, Scultz SG, Bick RJ, Poindexter BJ, Desoigne R, Weisbrodt NW, Haber MM, Moore FA. Shock 21: 433-437, 2004). However, the precise mechanisms of the gut protective effects of glutamine have not been well elucidated. In the present study, RNA microarray was performed to obtain differentially expressed genes in intestinal epithelial IEC-6 cells following either 2 mM or 10 mM glutamine. The result demonstrated that specificity protein 3 (Sp3) mRNA expression was downregulated 3.1-fold. PCR and Western blot confirmed that Sp3 expression was decreased by glutamine in a time- and dose-dependent fashion. To investigate the role of Sp3, Sp3 gene siRNA silencing was performed and apoptosis was assessed. Silencing of Sp3 demonstrated a significant increase in Bcl-2 and decrease in Bax protein expression, as well as a decrease in caspase-3, -8, and -9 protein expression and activity. The protein expression of apoptosis-related proteins after hypoxia/reoxygenation was similar to that of normoxia and correlated with a decrease in DNA fragmentation. Importantly, the addition of glutamine to Sp3-silenced cells did not further lessen apoptosis, suggesting that Sp3 plays a major role in the inhibitory effect of glutamine on apoptosis. This novel finding may explain in part the gut-protective effects of glutamine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号