首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   100篇
  1334篇
  2023年   6篇
  2022年   12篇
  2021年   26篇
  2020年   14篇
  2019年   13篇
  2018年   11篇
  2017年   14篇
  2016年   27篇
  2015年   55篇
  2014年   54篇
  2013年   56篇
  2012年   98篇
  2011年   66篇
  2010年   47篇
  2009年   45篇
  2008年   73篇
  2007年   55篇
  2006年   58篇
  2005年   56篇
  2004年   76篇
  2003年   58篇
  2002年   74篇
  2001年   15篇
  1999年   13篇
  1998年   19篇
  1997年   12篇
  1996年   13篇
  1995年   16篇
  1994年   12篇
  1993年   16篇
  1992年   14篇
  1991年   8篇
  1990年   7篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1984年   12篇
  1983年   10篇
  1982年   8篇
  1981年   10篇
  1980年   9篇
  1979年   6篇
  1978年   8篇
  1977年   10篇
  1976年   5篇
  1975年   7篇
  1973年   5篇
  1960年   5篇
  1956年   9篇
排序方式: 共有1334条查询结果,搜索用时 15 毫秒
991.
The enzyme complexes involved in mitochondrial oxidative phosphorylation are organized into higher ordered assemblies termed supercomplexes. Subunits e and g (Su e and Su g, respectively) are catalytically nonessential subunits of the F1F0-ATP synthase whose presence is required to directly support the stable dimerization of the ATP synthase complex. We report here that Su g and Su e are also important for securing the correct organizational state of the cytochrome bc1-cytochrome oxidase (COX) supercomplex. Mitochondria isolated from the Delta su e and Delta su g null mutant strains exhibit decreased levels of COX enzyme activity but appear to have normal COX subunit protein levels. An altered stoichiometry of the cytochrome bc1-COX supercomplex was observed in mitochondria deficient in Su e and/or Su g, and a perturbation in the association of Cox4, a catalytically important subunit of the COX complex, was also detected. In addition, an increase in the level of the TIM23 translocase associated with the cytochrome bc1-COX supercomplex is observed in the absence of Su e and Su g. Together, our data highlight that a further level of complexity exists between the oxidative phosphorylation supercomplexes, whereby the organizational state of one complex, i.e. the ATP synthase, may influence that of another supercomplex, namely the cytochrome bc1-COX complex.  相似文献   
992.
Here we present the tetrameric structure of stefin B, which is the result of a process by which two domain-swapped dimers of stefin B are transformed into tetramers. The transformation involves a previously unidentified process of extensive intermolecular contacts, termed hand shaking, which occurs concurrently with trans to cis isomerization of proline 74. This proline residue is widely conserved throughout the cystatin superfamily, a member of which, human cystatin C, is the key protein in cerebral amyloid angiopathy. These results are consistent with the hypothesis that isomerization of proline residues can play a decisive role in amyloidogenesis.  相似文献   
993.
994.
995.
Quantifying the rate of dispersal of target insects when infected with a disease agent will aid the development of biorational pest control programs. The effect of nucleopolyhedrovirus (NPV) infection on the mobility of second and fourth instarMamestra brassicaelarvae was investigated in the laboratory and field. NPV infection altered larval mobility, with the changes in behavior varying with the timecourse of infection. Diseased larvae moved three to five times further than healthy ones during the middle stages of infection. By the 7th day postinfection diseased larvae were less mobile than healthy counterparts. The same pattern of modified behavior was observed in both instars. Fourth instar larvae moved further than second instars under laboratory and field conditions. In the field, infected larvae tended to die on the apex of the cabbage leaves. Bioassay of the leaves showed a linear decrease in inoculum from central to peripheral plants within the plots, which occurred to the same extent for second and fourth instars. Leaves from plots where infected fourth instar larvae had been introduced had higher inoculum density than those from plots with second instars.  相似文献   
996.
We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII), a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE) 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter) and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found), similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice) have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology.  相似文献   
997.
998.
The regulation and control of plasma membrane Ca(2+) fluxes is critical for the initiation and maintenance of a variety of signal transduction cascades. Recently, the study of transient receptor potential channels (TRPs) has suggested that these proteins have an important role to play in mediating capacitative calcium entry. In this study, we have isolated a cDNA from human brain that encodes a novel transient receptor potential channel termed human TRP7 (hTRP7). hTRP7 is a member of the short TRP channel family and is 98% homologous to mouse TRP7 (mTRP7). At the mRNA level hTRP7 was widely expressed in tissues of the central nervous system, as well as some peripheral tissues such as pituitary gland and kidney. However, in contrast to mTRP7, which is highly expressed in heart and lung, hTRP7 was undetectable in these tissues. For functional analysis, we heterologously expressed hTRP7 cDNA in an human embryonic kidney cell line. In comparison with untransfected cells depletion of intracellular calcium stores in hTRP7-expressing cells, using either carbachol or thapsigargin, produced a marked increase in the subsequent level of Ca(2+) influx. This increased Ca(2+) entry was blocked by inhibitors of capacitative calcium entry such as La(3+) and Gd(3+). Furthermore, transient transfection of an hTRP7 antisense expression construct into cells expressing hTRP7 eliminated the augmented store-operated Ca(2+) entry. Our findings suggest that hTRP7 is a store-operated calcium channel, a finding in stark contrast to the mouse orthologue, mTRP7, which is reported to enhance Ca(2+) influx independently of store depletion, and suggests that human and mouse TRP7 channels may fulfil different physiological roles.  相似文献   
999.

Background

Toll-like receptor (TLR)4 agonists are known potent immunostimulatory compounds. These compounds can be formulated as part of novel adjuvants to enhance vaccine medicated immune responses. However, the contribution of the formulation to the innate in vivo activity of TLR4 agonist compounds is not well understood.

Methodology and Principal Findings

We evaluated synthetic TLR4 agonist Glucopyranosyl Lipid A (GLA) for its effects on molecular and cellular innate immune responses in the murine model. Microarray techniques were used to compare the responses to GLA in an aqueous formulation or in an oil-in-water Stable Emulsion formulation (GLA-SE) versus either SE alone or the mineral salt aluminum hydroxide (alum) at the muscle injection site over multiple timepoints. In contrast to the minimal gene upregulation induced by SE and alum, both GLA and GLA-SE triggered MyD88- and TRIF-dependent gene expression. Genes for chemokines, cytokine receptors, signaling molecules, complement, and antigen presentation were also strongly upregulated by GLA and GLA-SE. These included chemokines for TH1-type T cells (CXCL9 and CXCL10) and mononuclear leukocytes (CCL2, CCL3) among others. GLA-SE induced stronger and more sustained gene upregulation than GLA in the muscle; GLA-SE induced genes were also detected in local draining lymph nodes and at lower levels in peripheral blood. Both GLA and GLA-SE resulted in increased cellular trafficking to the draining lymph nodes and upregulated MHC molecules and ICAM1 on local dendritic cells. GLA and GLA-SE transiently upregulated circulating MCP-1, TNFα, IFNγ and IP-10 in blood.

Conclusions/Significance

While GLA and GLA-SE activate a large number of shared innate genes and proteins, GLA-SE induces a quantitatively and qualitatively stronger response than GLA, SE or alum. The genes and proteins upregulated could be used to facilitate selection of appropriate adjuvant doses in vaccine formulations.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号