首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   34篇
  396篇
  2023年   4篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   12篇
  2014年   16篇
  2013年   11篇
  2012年   28篇
  2011年   25篇
  2010年   13篇
  2009年   23篇
  2008年   20篇
  2007年   20篇
  2006年   20篇
  2005年   21篇
  2004年   16篇
  2003年   23篇
  2002年   28篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   7篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1980年   3篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1972年   3篇
  1967年   2篇
  1961年   1篇
  1960年   1篇
  1959年   1篇
  1950年   1篇
  1949年   2篇
  1938年   1篇
排序方式: 共有396条查询结果,搜索用时 0 毫秒
31.
32.
Cellular receptors can act as molecular switches, regulating the sensitivity of microbial proteins to conformational changes that promote cellular entry. The activities of these receptor-based switches are only partially understood. In this paper, we sought to understand the mechanism that underlies the activity of the ANTXR2 anthrax toxin receptor-based switch that binds to domains 2 and 4 of the protective antigen (PA) toxin subunit. Receptor-binding restricts structural changes within the heptameric PA prepore that are required for pore conversion to an acidic endosomal compartment. The transfer cross-saturation (TCS) NMR approach was used to monitor changes in the heptameric PA-receptor contacts at different steps during prepore-to-pore conversion. These studies demonstrated that receptor contact with PA domain 2 is weakened prior to pore conversion, defining a novel intermediate in this pathway. Importantly, ANTXR2 remained bound to PA domain 4 following pore conversion, suggesting that the bound receptor might influence the structure and/or function of the newly formed pore. These studies provide new insights into the function of a receptor-based molecular switch that controls anthrax toxin entry into cells.  相似文献   
33.

Background

The Campanuloideae (Campanulaceae) are a highly diverse clade of angiosperms found mostly in the Northern Hemisphere, with the highest diversity in temperate areas of the Old World. Chloroplast markers have greatly improved our understanding of this clade but many relationships remain unclear primarily due to low levels of molecular evolution and recent and rapid divergence. Furthermore, focusing solely on maternally inherited markers such as those from the chloroplast genome may obscure processes such as hybridization. In this study we explore the phylogenetic utility of two low-copy nuclear loci from the pentatricopeptide repeat gene family (PPR). Rapidly evolving nuclear loci may provide increased phylogenetic resolution in clades containing recently diverged or closely related taxa. We present results based on both chloroplast and low-copy nuclear loci and discuss the utility of such markers to resolve evolutionary relationships and infer hybridization events within the Campanuloideae clade.

Results

The inclusion of low-copy nuclear genes into the analyses provides increased phylogenetic resolution in two species-rich clades containing recently diverged taxa. We also obtain support for the placement of two early diverging lineages (Jasione and Musschia-Gadellia clades) that have previously been unresolved. Furthermore, phylogenetic analyses of PPR loci revealed potential hybridization events for a number of taxa (e.g., Campanula pelviformis and Legousia species). These loci offer greater overall topological support than obtained with plastid DNA alone.

Conclusion

This study represents the first inclusion of low-copy nuclear genes for phylogenetic reconstruction in Campanuloideae. The two PPR loci were easy to sequence, required no cloning, and the sequence alignments were straightforward across the entire Campanuloideae clade. Although potentially complicated by incomplete lineage sorting, these markers proved useful for understanding the processes of reticulate evolution and resolving relationships at a wide range of phylogenetic levels. Our results stress the importance of including multiple, independent loci in phylogenetic analyses.  相似文献   
34.
35.
Alzheimer's disease (AD) is a neurodegenerative disorder in which oxidative stress has been implicated as an important event in the progression of the pathology. In particular, it has been shown that protein modification by reactive oxygen species (ROS) occurs to a greater extent in AD than in control brain, suggesting a possible role for oxidation-related decrease in protein function in the process of neurodegeneration. Oxidative damage to proteins, assessed by measuring the protein carbonyl content, is involved in several events such as loss in specific protein function, abnormal protein clearance, depletion of the cellular redox-balance and interference with the cell cycle, and, ultimately, neuronal death. The present investigation represents a further step in understanding the relationship between oxidative modification of protein and neuronal death in AD. Previously, we used our proteomics approach, which successfully substitutes for labor-intensive immunochemical analysis, to detect proteins and identified creatine kinase, glutamine synthase and ubiquitin carboxy-terminal hydrolase L-1 as specifically oxidized proteins in AD brain. In this report we again applied our proteomics approach to identify new targets of protein oxidation in AD inferior parietal lobe (IPL). The dihydropyrimidinase related protein 2 (DRP-2), which is involved in the axonal growth and guidance, showed significantly increased level in protein carbonyls in AD brain, suggesting a role for impaired mechanism of neural network formation in AD. Additionally, the cytosolic enzyme alpha-enolase was identified as a target of protein oxidation and is involved the glycolytic pathway in the pathological events of AD. Finally, the heat shock cognate 71 (HSC-71) revealed increased, but not significant, oxidation in AD brain. These results are discussed with reference to potential involvement of these oxidatively modified proteins in neurodegeneration in AD brain.  相似文献   
36.
Constitutive splicing of the potato invertase mini-exon 2 (9 nt long) requires a branchpoint sequence positioned around 50 nt upstream of the 5' splice site of the adjacent intron and a U(11) element found just downstream of the branchpoint in the upstream intron [Simpson, Hedley, Watters, Clark, McQuade, Machray and Brown (2000) RNA 6, 422-433]. The sensitivity of this in vivo plant splicing system has been used to demonstrate exon scanning in plants, and to characterize plant intronic elements, such as branchpoint and poly-pyrimidine tract sequences. Plant introns differ from their vertebrate and yeast counterparts in being UA- or U-rich (up to 85% UA). One of the key differences in splicing between plants and other eukaryotes lies in early intron recognition, which is thought to be mediated by UA-binding proteins. We are adopting three approaches to studying the RNA-protein interactions in plant splicing. First, overexpression of plant splicing factors and, in particular, UA-binding proteins, in conjunction with a range of mini-exon mutants. Secondly, the sequences of around 65% of vertebrate and yeast splicing factors have high-quality matches to Arabidopsis proteins, opening the door to identification and analysis of gene knockouts. Finally, to discover plant-specific proteins involved in splicing and in, for example, rRNA or small nuclear RNA processing, green fluorescent protein-cDNA fusion libraries in viral vectors are being screened.  相似文献   
37.
Eighteen month old spontaneously hypertensive rats (SHR-rats) showed myocardial dysfunction and autoantibodies directed against the 1-adrenoceptor similarly as known in human dilated cardiomyopathy or Chagas' disease. The agonist-like antibodies were able to activate the 1-adrenoceptor mediated signal transduction cascade in cultured rat cardiomyocytes and induced a long-lasting stimulatory effect resulting in a harmful adrenergic overdrive. The antibodies recognized an epitope of the second extracellular loop of the 1-adrenoceptor identical to that epitope identified in Chagas' disease. In conclusion, our assumption is supported that old SHR-rat are an useful animal model for investigating the role of anti-1-adrenoceptor antibodies in the induction of human cardiomyopathy.  相似文献   
38.
39.
The crystal structure of zinc citrate [Zn(II) (C6H5O7)2·4NH4+] shows isolated zinc ions octahedrally coordinated to two equivalent citrates via a central hydroxyl, central carboxyl, and one terminal carboxyl from each citrate. The clusters are linked through hydrogen bonds to ammonium ions in the lattice. The structure is distinctly different from that of other divalent cation triply ionized citrate complexes, which are polymeric. Crystal data : space group P21/C, a = 8.784(3) Å, b = 13.499(4) Å, c = 9.083(3) Å, β = 113.4°(1), V = 988(1) Å3. Citrate has been identified as the low molecular weight ligand that complexes zinc in human milk; this may be of interest in relation to intestinal zinc absorption.  相似文献   
40.

Background

Improved tuberculosis control and the need to contain the spread of drug-resistant strains provide a strong rationale for exploring tuberculosis transmission dynamics at the population level. Whole-genome sequencing provides optimal strain resolution, facilitating detailed mapping of potential transmission pathways.

Methods

We sequenced 22 isolates from a Mycobacterium tuberculosis cluster in New South Wales, Australia, identified during routine 24-locus mycobacterial interspersed repetitive unit typing. Following high-depth paired-end sequencing using the Illumina HiSeq 2000 platform, two independent pipelines were employed for analysis, both employing read mapping onto reference genomes as well as de novo assembly, to control biases in variant detection. In addition to single-nucleotide polymorphisms, the analyses also sought to identify insertions, deletions and structural variants.

Results

Isolates were highly similar, with a distance of 13 variants between the most distant members of the cluster. The most sensitive analysis classified the 22 isolates into 18 groups. Four of the isolates did not appear to share a recent common ancestor with the largest clade; another four isolates had an uncertain ancestral relationship with the largest clade.

Conclusion

Whole genome sequencing, with analysis of single-nucleotide polymorphisms, insertions, deletions, structural variants and subpopulations, enabled the highest possible level of discrimination between cluster members, clarifying likely transmission pathways and exposing the complexity of strain origin. The analysis provides a basis for targeted public health intervention and enhanced classification of future isolates linked to the cluster.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号