首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   42篇
  2021年   2篇
  2019年   1篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   6篇
  2012年   6篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   8篇
  2006年   8篇
  2005年   8篇
  2004年   2篇
  2003年   9篇
  2002年   5篇
  2001年   1篇
  1999年   3篇
  1998年   9篇
  1994年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有102条查询结果,搜索用时 31 毫秒
21.
Herpes simplex virus (HSV) entry requires the core fusion machinery of gH/gL and gB as well as gD and a gD receptor. When gD binds receptor, it undergoes conformational changes that presumably activate gH/gL, which then activates gB to carry out fusion. gB is a class III viral fusion protein, while gH/gL does not resemble any known viral fusion protein. One hallmark of fusion proteins is their ability to bind lipid membranes. We previously used a liposome coflotation assay to show that truncated soluble gB, but not gH/gL or gD, can associate with liposomes at neutral pH. Here, we show that gH/gL cofloats with liposomes but only when it is incubated with gB at pH 5. When gB mutants with single amino acid changes in the fusion loops (known to inhibit the binding of soluble gB to liposomes) were mixed with gH/gL and liposomes at pH 5, gH/gL failed to cofloat with liposomes. These data suggest that gH/gL does not directly associate with liposomes but instead binds to gB, which then binds to liposomes via its fusion loops. Using monoclonal antibodies, we found that many gH and gL epitopes were altered by low pH, whereas the effect on gB epitopes was more limited. Our liposome data support the concept that low pH triggers conformational changes to both proteins that allow gH/gL to physically interact with gB.  相似文献   
22.
23.
Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, “slow and fast,” emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a “hair trigger.” Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion.  相似文献   
24.
Herpes simplex virus (HSV) entry into cells requires the binding of glycoprotein D (gD) to one of several cell surface receptors. The crystal structure of gD bound to one of these receptors, HveA/HVEM, reveals that the core of gD comprises an immunoglobulin fold flanked by a long C-terminal extension and an N-terminal hairpin loop. HveA is a member of the tumor necrosis factor receptor family and contains four cysteine-rich domains (CRDs) characteristic of this family. Fourteen amino acids within the gD N-terminal loop comprise the entire binding site for HveA. To determine the contribution of each gD contact residue to virus entry, we constructed gD molecules mutated in these amino acids. We determined the abilities of the gD mutants to bind receptors, facilitate virus entry, and mediate cell-cell fusion. Seven of the gD mutants exhibited wild-type levels of receptor binding and gD function. Results from the other seven gD mutants revealed three critical regions at the gD-HveA interface. (i) Several gD residues that participate in an intermolecular beta-sheet with HveA were found to be crucial for HveA binding and entry into HveA-expressing cells. (ii) Two gD residues that contact HveA-Y23 contributed to HveA binding but were not required for mediating entry into cells. HveA-Y23 fits into a crevice on the surface of gD and was previously shown to be essential for gD binding. (iii) CRD2 was previously shown to contribute to gD binding, and this study shows that one gD residue that contacts CRD2 contributes to HveA binding. None of the gD mutations prevented interaction with nectin-1, another gD receptor. However, when cotransfected with the other glycoproteins required for fusion, two gD mutants gained the ability to mediate fusion of cells expressing nectin-2, a gD receptor that interacts with several laboratory-derived gD mutants but not with wild-type gD. Thus, results from this panel of gD mutants as well as those of previous studies (A. Carfi, S. H. Willis, J. C. Whitbeck, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and D. C. Wiley, Mol. Cell 8:169-179, 2001, and S. A. Connolly, D. J. Landsburg, A. Carfi, D. C. Wiley, R. J. Eisenberg, and G. H. Cohen, J. Virol. 76:10894-10904, 2002) provide a detailed picture of the gD-HveA interface and the contacts required for functional interaction. The results demonstrate that of the 35 gD and HveA contact residues that comprise the gD-HveA interface, only a handful are critical for complex formation.  相似文献   
25.
 “Mayer waves” are long-period (6 to 12 seconds) oscillations in arterial blood pressure, which have been observed and studied for more than 100 years in the cardiovascular system of humans and other mammals. A mathematical model of the human cardiovascular system is presented, incorporating parameters relevant to the onset of Mayer waves. The model is analyzed using methods of Liapunov stability and Hopf bifurcation theory. The analysis shows that increase in the gain of the baroreflex feedback loop controlling venous volume may lead to the onset of oscillations, while changes in the other parameters considered do not affect stability of the equilibrium state. The results agree with clinical observations of Mayer waves in human subjects, both in the period of the oscillations and in the observed age-dependence of Mayer waves. This leads to a proposed explanation of their occurrence, namely that Mayer waves are a gain-induced oscillation. Received: 15 September 1997/Revised version: 15 March 1998  相似文献   
26.
The herpes simplex virus (HSV) gH-gL complex is essential for virus infectivity and is a major antigen for the host immune system. The association of gH with gL is required for correct folding, cell surface trafficking, and membrane presentation of the complex. Previously, a mammalian cell line was constructed which produces a secreted form of gHt-gL complex lacking the transmembrane and cytoplasmic tail regions of gH. gHt-gL retains a conformation similar to that of its full-length counterpart in HSV-infected cells. Here, we examined the structural and antigenic properties of gHt-gL. We first determined its stoichiometry and carbohydrate composition. We found that the complex consists of one molecule each of gH and gL. The N-linked carbohydrate (N-CHO) site on gL and most of the N-CHO sites on gH are utilized, and both proteins also contain O-linked carbohydrate and sialic acid. These results suggest that the complex is processed to the mature form via the Golgi network prior to secretion. To determine the antigenically active sites of gH and gL, we mapped the epitopes of a panel of gH and gL monoclonal antibodies (MAbs), using a series of gH and gL C-terminal truncation variant proteins produced in transiently transfected mammalian cells. Sixteen gH MAbs (including H6 and 37S) reacted with the N-terminal portion of gH between amino acids 19 and 276. One of the gH MAbs, H12, reacted with the middle portion of gH (residues 476 to 678). Nine gL MAbs (including 8H4 and VIII 62) reacted with continuous epitopes within the C-terminal portion of gL, and this region was further mapped within amino acids 168 to 178 with overlapping synthetic peptides. Finally, plasmids expressing the gH and gL truncations were employed in cotransfection assays to define the minimal regions of both gH and gL required for complex formation and secretion. The first 323 amino acids of gH and the first 161 amino acids of gL can form a stable secreted hetero-oligomer with gL and gH792, respectively, while gH323-gL168 is the smallest secreted hetero-oligomer. The first 648 amino acids of gH are required for reactivity with MAbs LP11 and 53S, indicating that a complex of gH648-gL oligomerizes into the correct conformation. The data suggest that both antigenic activity and oligomeric structure require the amino-terminal portions of gH and gL.  相似文献   
27.
Herpes simplex virus (HSV) entry into cells requires binding of the envelope glycoprotein D (gD) to one of several cell surface receptors. The 50 C-terminal residues of the gD ectodomain are essential for virus entry, but not for receptor binding. We have determined the structure of an unliganded gD molecule that includes these C-terminal residues. The structure reveals that the C-terminus is anchored near the N-terminal region and masks receptor-binding sites. Locking the C-terminus in the position observed in the crystals by an intramolecular disulfide bond abolished receptor binding and virus entry, demonstrating that this region of gD moves upon receptor binding. Similarly, a point mutant that would destabilize the C-terminus structure was nonfunctional for entry, despite increased affinity for receptors. We propose that a controlled displacement of the gD C-terminus upon receptor binding is an essential feature of HSV entry, ensuring the timely activation of membrane fusion.  相似文献   
28.
Herpes simplex virus (HSV) entry requires the interaction between the envelope glycoprotein D (gD) and a cellular receptor such as nectin-1 (also named herpesvirus entry mediator C [HveC]) or HveA/HVEM. Nectin-1 is a cell adhesion molecule found at adherens junctions associated with the cytoplasmic actin-binding protein afadin. Nectin-1 can act as its own ligand in a homotypic interaction to bridge cells together. We used a cell aggregation assay to map an adhesive functional site on nectin-1 and identify the effects of gD binding and HSV early infection on nectin-1 function. Soluble forms of nectin-1 and anti-nectin-1 monoclonal antibodies were used to map a functional adhesive site within the first immunoglobulin-like domain (V domain) of nectin-1. This domain also contains the gD-binding site, which appeared to overlap the adhesive site. Thus, soluble forms of gD were able to prevent nectin-1-mediated cell aggregation and to disrupt cell clumps in an affinity-dependent manner. HSV also prevented nectin-1-mediated cell aggregation by occupying the receptor. Early in infection, nectin-1 was not downregulated from the cell surface. Rather, detection of nectin-1 changed gradually over a 30-min period of infection, as reflected by a decrease in the CK41 epitope and an increase in the CK35 epitope. The level of detection of virion gD on the cell surface increased within 5 min of infection in a receptor-dependent manner. These observations suggest that cell surface nectin-1 and gD may undergo conformational changes during HSV entry as part of an evolving interaction between the viral envelope and the cell plasma membrane.  相似文献   
29.
Aspartate 368 on human immunodeficiency virus type 1 (HIV-1) gp120 forms multiple contacts with CD4; in mutagenesis studies, its replacement by asparagine and corresponding changes in simian immunodeficiency virus SIVmac (D385N) reduced binding with CD4. Nevertheless, simian immunodeficiency virus envelopes with D385N were prevalent in several studies. Extending these observations, we also found D385N to be dominant among env clones from two rhesus macaques that progressed rapidly to simian AIDS. These envelopes showed a CD4-independent phenotype as well as reduced affinity to CD4. Moreover, an adjacent change, G383R, which was frequently coselected with D385N, further decreased binding. An optical biosensor study demonstrated that the SIVmac239 gp120 bound to CD4 with kinetics similar to those of HIV-1. However, the gp120s with D385N and G383R showed a 40-fold reduction in affinity, with a drastic increase in dissociation rate, indicating an inherently unstable complex. This finding showed that rapid progression to simian AIDS may be accompanied by the selection of CD4-independent gp120 variants with impaired CD4 binding ability.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号