首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   12篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   9篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   6篇
  2002年   1篇
  2001年   2篇
  1999年   4篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   2篇
  1985年   1篇
  1979年   1篇
  1971年   1篇
  1960年   1篇
  1958年   3篇
  1928年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
51.
52.
Regulated protein destruction involving SCF (Skp1/Cullin/F-box, E3 ubiquitin ligase) complexes is required for multicellular development of Dictyostelium discoideum. Dynamic modification of cullin by nedd8 is required for the proper action of SCF. The COP9 signalosome (CSN), first identified in a signaling pathway for light response in plants, functions as a large multi-protein complex that regulates cullin neddylation in eukaryotes. Still, there is extreme sequence divergence of CSN subunits of the yeasts in comparison to the multicellular plants and animals. Using the yeast two-hybrid system, we have identified the CSN5 subunit as a potential interacting partner of a cell surface receptor of Dictyostelium. We further identified and characterized all 8 CSN subunits in Dictyostelium discoideum. Remarkably, despite the ancient origin of Dictyostelium, its CSN proteins cluster very closely with their plant and animal counterparts. We additionally show that the Dictyostelium subunits, like those of other systems are capable of multi-protein interactions within the CSN complex. Our data also indicate that CSN5 (and CSN2) are essential for cell proliferation in Dictyostelium, a phenotype similar to that of multicellular organisms, but distinct from that of the yeasts. Finally, we speculate on a potential role of CSN in cullin function and regulated protein destruction during multicellular development of Dictyostelium.  相似文献   
53.
Regulated protein destruction involving SCF (Skp1/Cullin/F-box, E3 ubiquitin ligase) complexes is required for multicellular development of Dictyostelium discoideum. Dynamic modification of cullin by nedd8 is required for the proper action of SCF. The COP9 signalosome (CSN), first identified in a signaling pathway for light response in plants, functions as a large multi-protein complex that regulates cullin neddylation in eukaryotes. Still, there is extreme sequence divergence of CSN subunits of the yeasts in comparison to the multicellular plants and animals. Using the yeast two-hybrid system, we have identified the CSN5 subunit as a potential interacting partner of a cell surface receptor of Dictyostelium. We further identified and characterized all 8 CSN subunits in Dictyostelium discoideum. Remarkably, despite the ancient origin of Dictyostelium, its CSN proteins cluster very closely with their plant and animal counterparts. We additionally show that the Dictyostelium subunits, like those of other systems are capable of multi-protein interactions within the CSN complex. Our data also indicate that CSN5 (and CSN2) are essential for cell proliferation in Dictyostelium, a phenotype similar to that of multicellular organisms, but distinct from that of the yeasts. Finally, we speculate on a potential role of CSN in cullin function and regulated protein destruction during multicellular development of Dictyostelium.  相似文献   
54.
We investigated the effects of warming and drought on C and N concentrations, nitrogen use efficiency (NUE), and C and N accumulation in different ecosystem compartments. We conducted a 6-year (1999–2005) field experiment to simulate the climate conditions projected by IPCC models for the coming decades in a Mediterranean shrubland. We studied the two dominant species, Globularia alypum and Erica multiflora, and an N-fixing species, Dorycnium pentaphyllum, also abundant in this shrubland. Warming (1 °C) decreased N leaf concentrations by 25% and increased N stem concentrations by 40% in G. alypum. Although warming changed the available ammonium in soil in some seasons, it did not increase total soil N contents. Drought (19% average reduction in soil moisture) decreased leaf N concentrations in the two dominant shrub species, E. multiflora and G. alypum by 16% and 19%, respectively, and increased stem N concentrations by 56% and 40%, respectively. Neither warming nor drought changed the leaf N concentrations in the N-fixing species D. pentaphyllum, although warming increased stem N concentration by 9%. In G. alypum, the increase of stem N concentrations contributed to the observed increase of N accumulation in stem biomass in drought treatments with respect to control plots (8 kg N ha−1). Neither warming nor drought changed NUE in the period 1999–2005. Warming increased soil organic C relative to drought. The effects of warming and drought on C and N concentrations, on N accumulation and on leaf/stem N distribution were not the result of dilution or concentration effects produced by changes in biomass accumulation. Other factors such as the changes in soil N availability, photosynthetic capacity, and plant internal C and N remobilization must be involved. These changes which differed depending on the species and the plant tissue show that the climate change projected for the coming decades will have significant effects on the C and N cycle and stoichiometry, with probable implications for ecosystem structure and function, such as changes in plant–herbivore relationships, decomposition rates or community species composition.  相似文献   
55.
Molecular phylogenetic analyses conducted over the past 15 yr have consistently had difficulties resolving relationships among the cetacean species in the subfamily Delphininae. In addition, paraphyly of the genera Tursiops and Stenella in these molecular phylogenies has been a recurrent problem since the first appearance of such a phylogeny in 1999, suggesting that these genera do not accurately reflect the evolutionary relationships of the species they contain. Morphological analyses have not resolved the issues. The genera in Delphininae originated in the 19th Century on questionable morphological grounds. The species were nearly all originally described in the genus Delphinus of Linnaeus. Recent molecular phylogenies based on various mitochondrial and nuclear DNA markers have suggested a wide range of possible relationships among these taxa, and several authors have suggested synonymizing all the taxa (Lagenodelphis, Stenella, Sousa, and Tursiops) under Delphinus. Until molecular and/or morphological analyses adequately sort out relationships in this very recently radiated group, one possible solution indeed would be to merge all the delphinine genera with Delphinus. Implications of such a move and alternatives are discussed.
Editor's Note: Papers from past Norris Award winners have primarily been a revised or reduced version of the actual presentation given as a plenary talk at the biennial conference. Dr. Perrin requested being allowed to take a topic from his presentation and expand on it to present a set of ideas in the form of an essay that could pass the rigors of the peer‐review process. As a result, this Norris Award paper has undergone peer‐review and has taken longer than usual for a Norris Award paper to appear in the journal following its presentation at the biennial conference. It also has co‐authors, with varying opinions on the issues discussed in the essay, to cover appropriately and more thoroughly those components of the paper that required additional expertise. I believe this approach has produced an excellent, thought‐provoking essay and is an approach that should be available to future Norris Award winners if they so choose to take it. Since this essay is meant to elicit dialogue, comments are welcome and will be considered for publication in Letters to the Editor.
  相似文献   
56.
The health of common bottlenose dolphins (Tursiops truncatus) within southern Georgia estuaries is of particular concern due to high levels of anthropogenic contaminants in their tissues. Dolphins in this region have the highest polychlorinated biphenyl (PCB) concentrations recorded for any marine mammal and these concentrations correlate to distance from a Superfund point‐source in the Turtle/Brunswick River Estuary (TBRE). Currently, little is known about the population structure of dolphins in this region. This study identifies and compares baseline data on abundance, habitat use, site‐fidelity, and ranging patterns of dolphins across two adjacent field sites; Brunswick, including the TBRE, and Sapelo, including the Sapelo Island National Estuarine Research Reserve. Sapelo is relatively undeveloped and was selected for comparison to the more contaminated TBRE. Dolphin densities increased with tributary size in both sites but dolphin density and total abundance were significantly higher in Sapelo than in Brunswick. Anthropogenic stressors within the TBRE may be an important factor contributing to the differences in abundance, density, and habitat use observed in this study.  相似文献   
57.
The discovery of RNA interference (RNAi) gave rise to the development of new nucleic acid-based technologies as powerful investigational tools and potential therapeutics. Mechanistic key details of RNAi in humans need to be deciphered yet, before such approaches take root in biomedicine and molecular therapy.We developed and validated an in silico-based model of siRNA-mediated RNAi in human cells in order to link in vitro-derived pre-steady state kinetic data with a quantitative and time-resolved understanding of RNAi on the cellular level. The observation that product release by Argonaute 2 is accelerated in the presence of an excess of target RNA in vitro inspired us to suggest an associative mechanism for the RNA slicer reaction where incoming target mRNAs actively promote dissociation of cleaved mRNA fragments. This novel associative model is compatible with high multiple turnover rates of RNAi-based gene silencing in living cells and accounts for target mRNA concentration-dependent enhancement of the RNAi machinery.  相似文献   
58.
Global mean temperature is predicted to increase by 2–7 °C and precipitation to change across the globe by the end of this century. To quantify climate effects on ecosystem processes, a number of climate change experiments have been established around the world in various ecosystems. Despite these efforts, general responses of terrestrial ecosystems to changes in temperature and precipitation, and especially to their combined effects, remain unclear. We used meta‐analysis to synthesize ecosystem‐level responses to warming, altered precipitation, and their combination. We focused on plant growth and ecosystem carbon (C) balance, including biomass, net primary production (NPP), respiration, net ecosystem exchange (NEE), and ecosystem photosynthesis, synthesizing results from 85 studies. We found that experimental warming and increased precipitation generally stimulated plant growth and ecosystem C fluxes, whereas decreased precipitation had the opposite effects. For example, warming significantly stimulated total NPP, increased ecosystem photosynthesis, and ecosystem respiration. Experimentally reduced precipitation suppressed aboveground NPP (ANPP) and NEE, whereas supplemental precipitation enhanced ANPP and NEE. Plant productivity and ecosystem C fluxes generally showed higher sensitivities to increased precipitation than to decreased precipitation. Interactive effects of warming and altered precipitation tended to be smaller than expected from additive, single‐factor effects, though low statistical power limits the strength of these conclusions. New experiments with combined temperature and precipitation manipulations are needed to conclusively determine the importance of temperature–precipitation interactions on the C balance of terrestrial ecosystems under future climate conditions.  相似文献   
59.
Although single nucleotide polymorphisms (SNPs) are commonly used in human genetics, they have only recently been incorporated into genetic studies of non‐model organisms, including cetaceans. SNPs have several advantages over other molecular markers for studies of population genetics: they are quicker and more straightforward to score, cross‐laboratory comparisons of data are less complicated, and they can be used successfully with low‐quality DNA. We screened portions of the genome of one of the most abundant cetaceans in U.S. waters, the common bottlenose dolphin (Tursiops truncatus), and identified 153 SNPs resulting in an overall average of one SNP every 463 base pairs. Custom TaqMan® Assays were designed for 53 of these SNPs, and their performance was tested by genotyping a set of bottlenose dolphin samples, including some with low‐quality DNA. We found that in 19% of the loci examined, the minor allele frequency (MAF) estimated during initial SNP ascertainment using a DNA pool of 10 individuals differed significantly from the final MAF after genotyping over 100 individuals, suggesting caution when making inferences about MAF values based on small data sets. For two assays, we also characterized the basis for unusual clustering patterns to determine whether their data could still be utilized for further genetic studies. Overall results support the use of these SNPs for accurate analysis of both poor and good‐quality DNA. We report the first SNP markers and genotyping assays for use in population and conservation genetic studies of bottlenose dolphins.  相似文献   
60.
M. GLOOR  O. L. PHILLIPS  J. J. LLOYD  S. L. LEWIS  Y. MALHI  T. R. BAKER  G. LÓPEZ‐GONZALEZ  J. PEACOCK  S. ALMEIDA  A. C. ALVES De OLIVEIRA  E. ALVAREZ  I. AMARAL  L. ARROYO  G. AYMARD  O. BANKI  L. BLANC  D. BONAL  P. BRANDO  K.‐J. CHAO  J. CHAVE  N. DÁVILA  T. ERWIN  J. SILVA  A. Di FIORE  T. R. FELDPAUSCH  A. FREITAS  R. HERRERA  N. HIGUCHI  E. HONORIO  E. JIMÉNEZ  T. KILLEEN  W. LAURANCE  C. MENDOZA  A. MONTEAGUDO  A. ANDRADE  D. NEILL  D. NEPSTAD  P. NÚÑEZ VARGAS  M. C. PEÑUELA  A. PEÑA CRUZ  A. PRIETO  N. PITMAN  C. QUESADA  R. SALOMÃO  MARCOS SILVEIRA  M. SCHWARZ  J. STROPP  F. RAMÍREZ  H. RAMÍREZ  A. RUDAS  H. Ter STEEGE  N. SILVA  A. TORRES  J. TERBORGH  R. VÁSQUEZ  G. Van Der HEIJDEN 《Global Change Biology》2009,15(10):2418-2430
Positive aboveground biomass trends have been reported from old-growth forests across the Amazon basin and hypothesized to reflect a large-scale response to exterior forcing. The result could, however, be an artefact due to a sampling bias induced by the nature of forest growth dynamics. Here, we characterize statistically the disturbance process in Amazon old-growth forests as recorded in 135 forest plots of the RAINFOR network up to 2006, and other independent research programmes, and explore the consequences of sampling artefacts using a data-based stochastic simulator. Over the observed range of annual aboveground biomass losses, standard statistical tests show that the distribution of biomass losses through mortality follow an exponential or near-identical Weibull probability distribution and not a power law as assumed by others. The simulator was parameterized using both an exponential disturbance probability distribution as well as a mixed exponential–power law distribution to account for potential large-scale blowdown events. In both cases, sampling biases turn out to be too small to explain the gains detected by the extended RAINFOR plot network. This result lends further support to the notion that currently observed biomass gains for intact forests across the Amazon are actually occurring over large scales at the current time, presumably as a response to climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号