首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   24篇
  278篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   15篇
  2013年   12篇
  2012年   12篇
  2011年   15篇
  2010年   10篇
  2009年   9篇
  2008年   15篇
  2007年   16篇
  2006年   14篇
  2005年   11篇
  2004年   14篇
  2003年   17篇
  2002年   10篇
  2001年   7篇
  2000年   8篇
  1999年   11篇
  1998年   9篇
  1997年   9篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
31.
The equilibrium unfolding process of Photobacterium leiognathi Cu,Zn superoxide dismutase has been quantitatively monitored through circular dichroism (CD) and fluorescence spectroscopy, upon increasing the guanidinium hydrochloride concentration. The study has been undertaken for both the holo- and the copper-free derivative to work out the role of copper in protein stability. In both cases the unfolding was reversible. The denaturation curve derived from CD and fluorescence spectroscopy was not coincident, suggesting that the denaturation process occurs through a three-state model with formation of an intermediate monomeric species. The occurrence of an intermediate species has been unambiguously demonstrated following CD and steady-state fluorescence spectra of the enzyme at various concentrations in presence of a fixed amounts of guanidinium hydrochloride.  相似文献   
32.
33.
We provide the first biochemical evidence of a direct interaction between the glutathione transferase P1-1 (GSTP1-1) and the TRAF domain of TNF receptor-associated factor 2 (TRAF2), and describe how ligand binding modulates such an equilibrium. The dissociation constant of the heterocomplex is Kd=0.3 μM; however the binding affinity strongly decreases when the active site of GSTP1-1 is occupied by the substrate GSH (Kd≥2.6 μM) or is inactivated by oxidation (Kd=1.7 μM). This indicates that GSTP1-1''s TRAF2-binding region involves the GSH-binding site. The GSTP1-1 inhibitor NBDHEX further decreases the complex''s binding affinity, as compared with when GSH is the only ligand; this suggests that the hydrophobic portion of the GSTP1-1 active site also contributes to the interaction. We therefore hypothesize that TRAF2 binding inactivates GSTP1-1; however, analysis of the data, using a model taking into account the dimeric nature of GSTP1-1, suggests that GSTP1-1 engages only one subunit in the complex, whereas the second subunit maintains the catalytic activity or binds to other proteins. We also analyzed GSTP1-1''s association with TRAF2 at the cellular level. The TRAF2–GSTP1-1 complex was constitutively present in U-2OS cells, but strongly decreased in S, G2 and M phases. Thus the interaction appears regulated in a cell cycle-dependent manner. The variations in the levels of individual proteins seem too limited to explain the complex''s drastic decline observed in cells progressing from the G0/G1 to the S–G2–M phases. Moreover, GSH''s intracellular content was so high that it always saturated GSTP1-1. Interestingly, the addition of NBDHEX maintains the TRAF2–GSTP1-1 complex at low levels, thus causing a prolonged cell cycle arrest in the G2/M phase. Overall, these findings suggest that a reversible sequestration of TRAF2 into the complex may be crucial for cell cycle progression and that multiple factors are involved in the fine-tuning of this interaction.  相似文献   
34.
35.
Yeast Ccc2 is a P-type ATPase responsible for transport of copper(I) from the cytosol to the trans-Golgi network. It possesses a soluble cytosolic N-terminal region containing two copper(I)-binding domains. Homologous eukaryotic copper-transporting ATPases have from one to six domains. We have expressed a fragment encompassing residues 1-150 of Ccc2, which corresponds to the two domains, and found that the second domain was substantially less structured than the first. The first domain could bind copper(I) and interact with the partner protein Atx1 at variance with the second. Similar results are found in ATPases from other organisms and may represent a general feature, whose biochemical implications are not yet fully appreciated.  相似文献   
36.
One-hundred-and-seventy-nine sequences of Fe2S2 ferredoxins and ferredoxin precursors were identified in and retrieved from currently available protein and cDNA databases. On the basis of their cluster-binding patterns, these sequences were divided into three groups: those containing the CX4CX2CXnC pattern (plant-type ferredoxins), those with the CX5CX2CXnC pattern (adrenodoxins), and those with a different pattern. These three groups contain, respectively, 139, 36, and 4 sequences. After excluding ferredoxin precursors in the first group, two subgroups were identified, again based on their cluster-binding patterns: 88 sequences had the CX4CX2CX29C pattern, and 29 had the CX4CX2CXmC (m not equal 29) pattern. The structures of the 88 ferredoxins with the CX4CX2CX29C pattern were modeled based on the available experimental structures of nine proteins within this same group. The modeling procedure was tested by building structural models for the ferredoxins with known structures. The models resulted, on average, in being within 1 A of the backbone root-mean-square deviation from the corresponding experimental structures. In addition, these structural models were shown to be of high quality by using assessment procedures based on energetic and stereochemical parameters. Thus, these models formed a reliable structural database for this group of ferredoxins, which is meaningful within the framework of current structural genomics efforts. From the analysis of the structural database generated it was observed that the secondary structural elements and the overall three-dimensional structures are maintained throughout the superfamily. In particular, the residues in the hydrophobic core of the protein were found to be either absolutely conserved or conservatively substituted. In addition, certain solvent-accessible charged groups, as well as hydrophobic groups, were found to be conserved to the same degree as the core residues. The patterns of conservation of exposed residues identified the regions of the protein that are critical for its function in electron transfer. An extensive analysis of protein-protein interactions is now possible. Some conserved interactions between residues have been identified and related to structural and/or functional features. All this information could not be obtained from the analyses of the primary sequences alone. Finally, the analysis of the sequences of the related subgroup featuring the CX4CX2CXmC (m not equal 29) cluster-binding pattern in the light of the structural and functional insights provided by the inspection of the mentioned structural database affords some hints on the functional features of ferredoxins belonging to this subgroup.  相似文献   
37.
The periplasmic maltose-binding protein (MBP) of Escherichia coli is the recognition component of the maltose chemoreceptor and of the active transport system for maltose. It interacts with the Tar chemotactic signal transducer and the integral cytoplasmic-membrane components (the MalF and MalG proteins) of the maltose transport system. Maltose binds in a cleft between the globular N-terminal and C-terminal domains of MBP, which are connected by a moveable hinge. The two domains undergo a large motion relative to one another as the protein moves from the open, unbound state to the closed, ligand-bound state. We generated, by doped-primer mutagenesis, amino acid substitutions that specifically disrupt the chemotactic function of MBP. These substitutions cluster in two well-defined regions that are nearly contiguous on the surface of MBP in its closed conformation. One region is in the N-terminal domain and one is in the C-terminal domain. The distance between the two regions is expected to change substantially as the protein goes from the open to the closed form. These results support a model in which ligand binding brings two recognition sites on MBP into the proper spatial relationship to interact with complementary sites on Tar. Mutations in MBP that appear to cause defects in interaction with MalF and MalG are distributed differently from mutations that primarily affect maltose taxis. We conclude that the regions of MBP that contact Tar and those that contact MalF and MalG are adjacent on the face of the protein opposite the hinge connecting the two domains and that those regions are largely, although perhaps not entirely, distinct.  相似文献   
38.
Monoclonal antibodies coupled to highly toxic molecules (immunoconjugates) are currently being developed for cancer therapy. We have used an in silico procedure for evaluating some physicochemical properties of two tumor-targeting anti-HER2 immunoconjugates: (a) the single-chain antibody scFv(FRP5) linked to a bacterial toxin, that has been recently progressed to phase I clinical trial in human cancer; (b) the putative molecule formed by the intrinsically stable scFv(800E6), which has been proposed as toxin carrier to cancer cells in human therapy, joined to the same toxin of (a). Structural models of the immunoconjugates have been built by homology modeling and assessed by molecular dynamics simulations. The trajectories have been analyzed to extract some biochemical properties and to assess the potential effects of the toxin on the structure and dynamics of the anti-HER2 antibodies. The results of the computational approach indicate that the antibodies maintain their correct folding even in presence of the toxin, whereas a certain stiffness in correspondence of some structural regions is observed. Furthermore, the toxin does not seem to affect the antibody solubility, whereas it enhances the structural stability. The proposed computational approach represent a promising tool for analyzing some physicochemical properties of immunoconjugates and for predicting the effects of the linked toxin on structure, dynamics, and functionality of the antibodies.  相似文献   
39.
A stochastic model for cooperative transitions in biological systems based on a Markov chain is proposed. This model requires only two parameters, the mean probability, p, and the coupling capacity, Deltap, which measure the probability of forming a new weak bond depending on the number of similar bonds already formed and it is also responsible for the transition. In this paper we show how the model works for a large number of identical molecules and how it can be useful for studying the noise around the centre of the transition where, increasing the degree of cooperativity, i.e. the number n in the well-known Hill equation, the width of the noise increases along with its fractal dimension. A simple relationship between the degree of cooperativity and the parameter Deltap is proposed, suggesting that the cooperativity of real biological transitions is related to the coupling capacity Deltap of the present model.  相似文献   
40.
Cytochromes c are very widespread proteins that play key roles in the electron transfer events associated to a wide variety of physiological redox processes. The function of cytochromes c is, at the broad level, to interact with different partners in order to allow electrons to flow from one protein to another. Here, we focused our attention on the protein-protein interactions that involve mono-heme cytochrome c domains in order to identify possible general vs. specific patterns of intermolecular interactions at the structural level. We observed that a number of physico-chemical properties are statistically different in transient vs. permanent and fused complexes. These include the extent of the protein interface area, the amino acid composition and the packing density at the interface. The understanding of the features of transient redox complexes is of particular importance because of the difficulty of obtaining co-crystals that preserve the physiologically relevant configuration. In addition, we identified three different structural modes of interaction that cover all the structurally characterized cytochrome c interactions except one. The mode of interaction does not correlate with the nature of the complex (transient, permanent, fused). Regardless of the mode of interaction, the distance between the heme iron and the partner metal center or organic cofactor center of mass is typically around 19-20 ? for complexes permitting direct electron transfer between the two sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号