首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4506篇
  免费   461篇
  国内免费   1篇
  4968篇
  2022年   41篇
  2021年   90篇
  2020年   55篇
  2019年   91篇
  2018年   109篇
  2017年   93篇
  2016年   144篇
  2015年   193篇
  2014年   224篇
  2013年   275篇
  2012年   307篇
  2011年   258篇
  2010年   177篇
  2009年   162篇
  2008年   236篇
  2007年   184篇
  2006年   189篇
  2005年   222篇
  2004年   174篇
  2003年   167篇
  2002年   158篇
  2001年   123篇
  2000年   104篇
  1999年   103篇
  1998年   54篇
  1997年   52篇
  1996年   57篇
  1995年   46篇
  1994年   56篇
  1993年   48篇
  1992年   74篇
  1991年   66篇
  1990年   67篇
  1989年   50篇
  1988年   46篇
  1987年   46篇
  1986年   34篇
  1985年   46篇
  1984年   25篇
  1983年   39篇
  1982年   39篇
  1981年   32篇
  1980年   16篇
  1979年   24篇
  1978年   12篇
  1977年   19篇
  1976年   18篇
  1975年   16篇
  1974年   13篇
  1968年   13篇
排序方式: 共有4968条查询结果,搜索用时 31 毫秒
91.
ApoC-I has several different lipid-regulating functions including, inhibition of receptor-mediated uptake of plasma triglyceride-rich lipoproteins, inhibition of cholesteryl ester transfer activity, and mediation of tissue fatty acid uptake. Since little is known about the rate of production and catabolism of plasma apoC-I in humans, the present study was undertaken to determine the plasma kinetics of VLDL and HDL apoC-I using a primed constant (12 h) intravenous infusion of deuterium-labeled leucine. Data were obtained for 14 subjects: normolipidemics (NL, n = 4), hypertriglyceridemics (HTG, n = 4) and combined hyperlipidemics (CHL, n = 6). Plasma VLDL triglyceride (TG) levels were 0.59 +/- 0.03, 4.32 +/- 0.77 (P < 0.01 vs. NL), and 2.20 +/- 0.39 mmol/l (P < 0.01 vs. NL), and plasma LDL cholesterol (LDL-C) levels were 2.34 +/- 0.22, 2.48 +/- 0.26, and 5.35 +/- 0.48 mmol/l (P < 0.01 vs. NL), respectively. HTG and CHL had significantly (P < 0.05) increased levels of total plasma apoC-I (12.5 +/- 1.2 and 12.4 +/- 1.3 mg/dl, respectively) versus NL (7.9 +/- 0.6 mg/dl), due to significantly (P < 0.01) elevated levels of VLDL apoC-I (5.8 +/- 0.8 and 4.5 +/- 0.8 vs. 0.3 +/- 0.1 mg/dl). HTG and CHL also had increased rates of VLDL apoC-I transport (i.e., production) versus NL: 2.29 +/- 0.34 and 3.04 +/- 0.53 versus 0.24 +/- 0.11 mg/kg.day (P < 0.01), with no significant change in VLDL apoC-I residence times (RT): 1.16 +/- 0.12 versus 0.69 +/- 0.06 versus 0.74 +/- 0.17. Although HDL apoC-I concentrations were not significantly lower in HTG and CHL versus NL, HDL apoC-I rates of transport were inversely related to plasma and VLDL-TG levels (r = -0.63 and -0.62, respectively, P < 0.05). Our results demonstrate that increased levels of plasma and VLDL apoC-I in hypertriglyceridemic subjects (with or without elevated LDL-C levels) are associated with increased levels of plasma VLDL apoC-I production.  相似文献   
92.

Background

Socio-economic inequalities in mortality are observed at the country level in both North America and Europe. The purpose of this work is to investigate the contribution of specific risk factors to social inequalities in cause-specific mortality using a large multi-country cohort of Europeans.

Methods

A total of 3,456,689 person/years follow-up of the European Prospective Investigation into Cancer and Nutrition (EPIC) was analysed. Educational level of subjects coming from 9 European countries was recorded as proxy for socio-economic status (SES). Cox proportional hazard model''s with a step-wise inclusion of explanatory variables were used to explore the association between SES and mortality; a Relative Index of Inequality (RII) was calculated as measure of relative inequality.

Results

Total mortality among men with the highest education level is reduced by 43% compared to men with the lowest (HR 0.57, 95% C.I. 0.52–0.61); among women by 29% (HR 0.71, 95% C.I. 0.64–0.78). The risk reduction was attenuated by 7% in men and 3% in women by the introduction of smoking and to a lesser extent (2% in men and 3% in women) by introducing body mass index and additional explanatory variables (alcohol consumption, leisure physical activity, fruit and vegetable intake) (3% in men and 5% in women). Social inequalities were highly statistically significant for all causes of death examined in men. In women, social inequalities were less strong, but statistically significant for all causes of death except for cancer-related mortality and injuries.

Discussion

In this European study, substantial social inequalities in mortality among European men and women which cannot be fully explained away by accounting for known common risk factors for chronic diseases are reported.  相似文献   
93.
Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10–20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas.  相似文献   
94.
No forest left behind   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   
95.
Recently, it has been suggested that C2ORF40 is a candidate tumor suppressor gene in breast cancer. However, the mechanism for reduced expression of C2ORF40 and its functional role in breast cancers remain unclear. Here we show that C2ORF40 is frequently silenced in human primary breast cancers and cell lines through promoter hypermethylation. C2ORF40 mRNA level is significantly associated with patient disease-free survival and distant cancer metastasis. Overexpression of C2ORF40 inhibits breast cancer cell proliferation, migration and invasion. By contrast, silencing C2ORF40 expression promotes these biological phenotypes. Bioinformatics and FACS analysis reveal C2ORF40 functions at G2/M phase by downregulation of mitotic genes expression, including UBE2C. Our results suggest that C2ORF40 acts as a tumor suppressor gene in breast cancer pathogenesis and progression and is a candidate prognostic marker for this disease.  相似文献   
96.
Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803–G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP−/− mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG.  相似文献   
97.
Posttranslational modification by SUMO provides functional flexibility to target proteins. Viruses interact extensively with the cellular SUMO modification system in order to improve their replication, and there are numerous examples of viral proteins that are SUMOylated. However, thus far the relevance of SUMOylation for rotavirus replication remains unexplored. In this study, we report that SUMOylation positively regulates rotavirus replication and viral protein production. We show that SUMO can be covalently conjugated to the viroplasm proteins VP1, VP2, NSP2, VP6, and NSP5. In addition, VP1, VP2, and NSP2 can also interact with SUMO in a noncovalent manner. We observed that an NSP5 SUMOylation mutant protein retains most of its activities, such as its interaction with VP1 and NSP2, the formation of viroplasm-like structures after the coexpression with NSP2, and the ability to complement in trans the lack of NSP5 in infected cells. However, this mutant is characterized by a high degree of phosphorylation and is impaired in the formation of viroplasm-like structures when coexpressed with VP2. These results reveal for the first time a positive role for SUMO modification in rotavirus replication, describe the SUMOylation of several viroplasm resident rotavirus proteins, and demonstrate a requirement for NSP5 SUMOylation in the production of viroplasm-like structures.  相似文献   
98.
Following intracerebral infection with Theiler’s murine encephalomyelitis virus (TMEV), susceptible strains of mice (SJL and PLJ) develop virus persistence and demyelination similar to that found in human multiple sclerosis. Resistant strains of mice (C57BL/6) clear virus and do not develop demyelination. To resolve the controversy about the role of CD4+ and CD8+ T cells in the development of demyelination and neurologic deficits in diseases of the central nervous system, we analyzed TMEV infection in CD4- and CD8-deficient B6, PLJ, and SJL mice. Genetic deletion of either CD4 or CD8 from resistant B6 mice resulted in viral persistence and demyelination during the chronic stage of disease. Viral persistence and demyelination were detected in all strains of susceptible background. Although genetic deletion of CD8 had no effect on the extent of demyelination in susceptible strains, deletion of CD4 dramatically increased the degree of demyelination observed. Whereas strains with deletions of CD4 showed severe neurologic deficits, mice with deletions of CD8 showed minimal or no deficits despite demyelination. In all strains, deletion of CD4 but not CD8 resulted in a decreased delayed-type hypersensitivity response to viral antigen. We conclude that each T-cell subset makes a discrete and nonredundant contribution to protection from viral persistence and demyelination in resistant strains. In contrast, in susceptible strains, CD8+ T cells do not provide protection against chronic demyelinating disease. Furthermore, in persistent TMEV infection of the central nervous system, neurologic deficits appear to result either from the absence of a protective class II-restricted immune response or from the presence of a pathogenic class I-restricted response.Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system (CNS) in humans. MS lesions are characterized by foci of inflammation, myelin destruction, and formation of astrocytic scars known as plaques. The presence of CD4+ T cells, CD8+ T cells (11), and macrophages in lesions suggests that pathogenesis is immunologically mediated; however, the specific contribution of specific cell types remains unknown (12, 44, 45). Although the etiology of MS is unknown, virus infection is the only epidemiological factor consistently associated with clinical exacerbation (43), and beta interferon, a cytokine with multiple known antiviral properties (46), is the only therapeutic agent definitively shown to decrease exacerbation and limit disability in MS (46). Therefore, the study of viral models of demyelination is extremely relevant.Theiler’s murine encephalomyelitis virus (TMEV), a picornavirus, induces a pathological and clinical disease similar to MS (24). Intracerebral infection with the Daniel strain (DA) of TMEV induces transient, acute neuronal polioencephalitis followed by chronic white matter demyelination and neurologic deficits in mice with susceptible (H-2f,p,q,r,s,v) major histocompatibility complex (MHC) haplotypes (15, 32). Mice with resistant (H-2b,d,k) MHC haplotypes recover from the acute disease with no obvious long-term sequelae or demyelination. Although TMEV infection of severely immunodeficient SCID mice results in severe neuronal encephalitis and death within approximately 2 weeks, these mice do not develop demyelination in the spinal cord white matter (38). However, when the immune systems of SCID mice are reconstituted by the adoptive transfer of splenocytes from immunocompetent mice or splenocytes treated with antibodies to CD4 or CD8, infection with TMEV results in chronic demyelination (38). These data indicate that similar to human MS, myelin destruction in chronic TMEV infection is immunologically mediated and requires contributions from both CD4+ and CD8+ T cells.Various reports have implicated both MHC class I- and class II-restricted cells in the pathogenesis of TMEV infection. CD4+ T cells have been implicated by studies demonstrating that demyelination is decreased following treatment with antibodies to CD4 (47) or I-A (34), is increased by adoptive transfer of a CD4+ T-cell line specific for VP2 capsid protein (9), and, in some studies, correlates with the development of a CD4-mediated delayed-type hypersensitivity (DTH) response against virus antigen (5). Furthermore, β2-microglobulin-deficient mice, which are deficient in MHC class I, CD8+ T cells, and natural killer cells, develop demyelinating disease (6, 16, 28). In contrast, a role for CD8+ T cells has been suggested by studies demonstrating that susceptibility to demyelination maps genetically to MHC class I (H-2D) (1, 35), differential expression of MHC class I in the CNS correlates with disease susceptibility (1), and depletion of CD8+ T cells diminishes demyelination (41). Myelin destruction and neurologic deficits develop in TMEV-infected Aβ0 mice which are deficient in functional MHC class II and CD4+ T cells (20). Of interest, both class I and class II-deficient mice share the resistant (H-2b) haplotype. This suggests that although multiple studies have implicated CD4+ and CD8+ T cells in the pathogenesis of TMEV infection, each of these components of the immune response is independently required for maintenance of resistance to demyelination.In order to definitively establish the contribution of CD4+ and CD8+ T cells to demyelination and neurologic deficits, mice lacking surface expression of CD4 or CD8 were backcrossed onto genetically resistant C57BL/6 (H-2b) and susceptible SJL (H-2s) and PLJ (H-2u) strains. In this report, we confirm that both CD4+ and CD8+ T cells are required for protection from viral persistence and demyelination in resistant strains of mice. We also demonstrate that genetic deletion of CD8 does not significantly affect the degree of demyelination or survival in susceptible strains; however, genetic deletion of CD4 greatly increases the degree of demyelination and worsens clinical disease. Of interest, genetic deletion of CD8 greatly reduces neurologic deficits in animals with demyelination.  相似文献   
99.
The subfamily Triatominae is actually represented by 137 species distributed among 6 tribes and 19 genera. Within this subfamily, the genus Panstrongylus, Berg 1879, is composed by 13 species widespread in sylvatic, peridomestic, and domestic habitats of Neotropical regions. These species are vectors of Chagas disease and consequently are found associated with its main hosts, such as birds and mammals. Interest in species of this genus has been increasing in the last few years. Reports of several authors indicate these Triatominae to invade and colonize houses, increasing their epidemiological significance. Morphometry was used in this study to investigate correlations among possible closely related species. We measured 224 specimens among 13 species through a set of metric variables of the head. The results indicated that the genus Panstrongylus seems to be homogeneous since 10 of the 14 species were shown to be closely related.  相似文献   
100.
Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near‐instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky–Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock‐on effects on speciation both within and outside regions of hybridization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号