首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1413篇
  免费   105篇
  2023年   6篇
  2022年   13篇
  2021年   21篇
  2020年   14篇
  2019年   24篇
  2018年   39篇
  2017年   30篇
  2016年   58篇
  2015年   58篇
  2014年   75篇
  2013年   106篇
  2012年   102篇
  2011年   95篇
  2010年   72篇
  2009年   65篇
  2008年   88篇
  2007年   60篇
  2006年   68篇
  2005年   90篇
  2004年   74篇
  2003年   59篇
  2002年   60篇
  2001年   24篇
  2000年   4篇
  1999年   17篇
  1998年   12篇
  1997年   16篇
  1996年   15篇
  1995年   12篇
  1994年   21篇
  1993年   17篇
  1992年   7篇
  1991年   10篇
  1990年   3篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   5篇
  1981年   9篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1975年   4篇
  1974年   3篇
  1971年   2篇
  1957年   2篇
排序方式: 共有1518条查询结果,搜索用时 15 毫秒
41.
Journal of Plant Growth Regulation - We investigated the effects of microbial volatile organic compounds (mVOC) emitted by Bacillus amyloliquefaciens GB03 on Mentha piperita growing under different...  相似文献   
42.
Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases.  相似文献   
43.
During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen morphogenesis by maintaining cell–cell contacts. Thus we reveal novel and important roles for Scrib in lung development operating via the PCP pathway, and in regulating junctional complexes and cell cohesion.  相似文献   
44.
Nosocomial infections are a major cause of morbidity and mortality among neonates admitted to neonatal intensive care units (NICUs). The aim of this paper was to describe an outbreak of Escherichia coli among infants admitted to the NICU of the General Hospital “Dr. Manuel Gea Gonzalez” in May of 2008. The isolated E. coli strains were identified using standard biochemical methods. The susceptibilities of these strains were analysed by determining their minimal inhibitory concentrations. Following this, their molecular relationships to each other were assessed by pulsed field gel electrophoresis (PFGE) analysis and corroborated by serology. Twelve E. coli strains were isolated from blood, urine, or indwelling catheter samples from five cases of preterm infants within a 3-day period. Patients were admitted to the NICU of the general hospital and, during the outbreak, developed sepsis caused by E. coli. For four of the patients, the average age was 23 days, while one patient was a 3-month-old infant. Prior to sepsis, the infants had received assisted ventilation and hyperalimentation through a central venous catheter. Two profiles were observed by PFGE; profile A was identified as the outbreak’s cause and an outcome of cross-infection, while profile B showed genetic differences but serologically it was identified as part of the same serotype. We conclude that E. coli colonised the patients through horizontal transmission. A focal source of the microorganism in this outbreak was not identified, but cross-transmission through handling was the most probable route.  相似文献   
45.
We have previously found that phenanthrenic opioids, including codeine, modulate morphine glucuronidation in the rat. Here codeine and five of its derivatives were compared in their effects on the synthesis of morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) from morphine by rat liver microsomal preparations, and by primary cultures of rat hepatocytes previously incubated for 72 h with either codeine or its derivatives. Acetylcodeine and pivaloylcodeine shared the capability of the parent compound of inhibiting the synthesis of M3G by liver microsomes through a noncompetitive mechanism of action. Their IC50 were 3.25, 2.27, and 4.32 μM, respectively. Dihydrocodeine, acetyldihydrocodeine, and lauroylcodeine were ineffective. In all the experimental circumstances M6G was undetectable in the incubation medium. In primary hepatocyte cultures codeine only inhibited M3G formation, but with a lower efficacy than that observed with microsomes (IC50 20.91 vs 4.32 μM). Preliminary results show that at micromolar concentrations codeine derivatives exhibit a low rate of affinity for μ opiate receptors. In conclusion, acetyl and pivaloyl derivatives of codeine noncompetitively inhibit liver glucuronidation of morphine interacting with microsomes. This study further strengths the notion that phenanthrenic opioids can modulate morphine glucuronidation independently from their effects on μ opiate receptors.  相似文献   
46.
By applying the framework proposed by Millennium Ecosystem Assessment, we analysed the current state and trends of 20 ecosystem services provided by Spanish rivers and riparian areas using 139 indicators. We compared the obtained results with the Europe and UK assessment. It is the first document that attempts to analyse the importance of services provided by Spanish rivers and riparian areas, and it forms part of the evaluation carried out for the Spanish Millennium Ecosystem Assessment. Among the provisioning services, freshwater, hydropower energy and genetic resources were classified as high importance, and water regulation and self-purification capacity, and natural hazard mitigation are among the regulating services, with landscape-aesthetic values and recreation and ecotourism featuring among the cultural services. About 61 % of the assessed ecosystem services are currently declining or degrading, but are higher than the percentage calculated for Europe (45 %) or for the UK (53 %). All regulating services are degrading, especially water regulation, natural hazard mitigation, soil formation and fertility and biological control, and the cultural services related to rural populations. Likewise, the biodiversity of Spanish aquatic ecosystems is decreasing rapidly. Land use changes and overexploitation of biological and mineral raw materials have been the main direct drivers of change in Spanish rivers and riparian zones, and relate directly to increase urbanised areas and irrigated agriculture. Finally, we draw some considerations on alternative models for aquatic ecosystems management which maintain aquatic ecosystem services and their biodiversity.  相似文献   
47.
Cellulase was produced by Trichoderma viride in semisolid cultures of rice bran, rice straw and rice hulls. T. viride QM 9414 generally produced higher cellulolytic activity on CM-cellulose (Cx activity) using rice bran-rice hull mixture (2:1 w/w) as substrate compared to strains ITCC 1433 and D 4014. It showed higher Cx activity on rice bran-rice straw mixtures than on rice bran-rice hull mixtures. Maximal extraction of the enzyme from mold bran was obtained with 0.05 m sodium citrate buffer, pH 3.5.  相似文献   
48.
49.
BackgroundThe climatic and cultural diversity of the Italian Peninsula triggered, over time, the development of a great variety of horse breeds, whose origin and history are still unclear. To clarify this issue, analyses on phenotypic traits and genealogical data were recently coupled with molecular screening.MethodologyTo provide a comprehensive overview of the horse genetic variability in Italy, we produced and phylogenetically analyzed 407 mitochondrial DNA (mtDNA) control-region sequences from ten of the most important Italian riding horse and pony breeds: Bardigiano, Esperia, Giara, Lipizzan, Maremmano, Monterufolino, Murgese, Sarcidano, Sardinian Anglo-Arab, and Tolfetano. A collection of 36 Arabian horses was also evaluated to assess the genetic consequences of their common use for the improvement of some local breeds.ConclusionsIn Italian horses, all previously described domestic mtDNA haplogroups were detected as well as a high haplotype diversity. These findings indicate that the ancestral local mares harbored an extensive genetic diversity. Moreover, the limited haplotype sharing (11%) with the Arabian horse reveals that its impact on the autochthonous mitochondrial gene pools during the final establishment of pure breeds was marginal, if any. The only significant signs of genetic structure and differentiation were detected in the geographically most isolated contexts (i.e. Monterufolino and Sardinian breeds). Such a geographic effect was also confirmed in a wider breed setting, where the Italian pool stands in an intermediate position together with most of the other Mediterranean stocks. However, some notable exceptions and peculiar genetic proximities lend genetic support to historical theories about the origin of specific Italian breeds.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号